Troograimuner Masnual

$$
\begin{aligned}
& \begin{array}{l}
1,6,5, V, 50,14,0,4,4,45,8, \mathrm{~L}, 0 \\
B, 7,10,
\end{array} \\
& \left\{\begin{array}{l}
\mathbf{B}, \mathbf{N}, \mathbf{N}, \mathbf{N}_{1}^{\prime \prime \prime} \\
1,1, \$ 9.96^{\prime \prime}
\end{array}\right. \\
& \begin{array}{l}
2, " \$ 0.416^{\prime \prime \prime} \\
3, " 638791091^{\prime \prime \prime}
\end{array} \\
& \text { 4,"KBDIAPERS"! } \\
& \begin{array}{l}
\text { 5,"24-pk.": } 981 "!\} \\
7, " 638791098
\end{array}
\end{aligned}
$$

Each product and program carries a respective written warranty, the only warranty on which the customer can rely. Avery Dennison Corp. reserves the right to make changes in the product, the programs, and their availability at any time and without notice. Although Avery Dennison Corp. has made every effort to provide complete and accurate information in this manual, Avery Dennison Corp. shall not be liable for any omissions or inaccuracies. Any update will be incorporated in a later edition of this manual.
©2000 Avery Dennison Corp. All rights reserved. No part of this publication may be reproduced, transmitted, stored in a retrieval system, or translated into any language in any form by any means, without the prior written permission of Avery Dennison Corp.

WARNING

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

CANADIAN D.O.C. WARNING

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la classe A prescrites dans le Réglement sur le brouillage radioélectrique édicte par le ministère des Communications du Canada.

Trademarks

Monarch®, Sierra Sport2, and 9460 are trademarks of Avery Dennison Retail Information Services LLC.
Avery Dennison $®$ is a trademark of Avery Dennison Corporation.
Microsoft, Windows, and NT are trademarks of Microsoft Corporation.
Novell and NetWare are trademarks of Novell, Inc. in the United States and other countries.
Centronics is a registered trademark of Centronics Data Computer Corporation.
Adobe and Acrobat are trademarks of Adobe Systems Incorporated.
UFST, Monotype, the Monotype logo, and CG Triumvirate are trademarks of Monotype Imaging, Inc.

Avery Dennison Printer Systems Division
170 Monarch Lane
Miamisburg, OH 45342

TABLE OF CONTENTS

GETTING STARTED 1-1
About This Manual 1-1
Standard Features 1-1
Creating an MPCLII Format Packet 1-2
Printer Memory 1-3
Using RAM 1-3
Using Flash Memory 1-4
Starting with a Design 1-4
Determining Format Contents 1-5
Determining the Print Area 1-5
Drawing Rough Sketches 1-6
Using Supply Layout Grids 1-6
Considering Field Types 1-7
Considering Fonts 1-7
Using the Format Worksheet 1-8
Filling in the Format Worksheet 1-8
CONFIGURING THE PRINTER 2-1
Setting Communication Parameters 2-2
Using MPCLII Conventions 2-3
MPCLII Punctuation 2-3
Standard Syntax Guidelines 2-3
Using Online Configuration Packets 2-5
Configuration Syntax Guidelines 2-8
Making Print Adjustments 2-8
Defining the System Setup Packet 2-9
Defining the Supply Setup Packet 2-10
Defining the Print Control Packet 2-12
Defining the Monetary Formatting Packet 2-13
Defining the Control Characters Packet 2-14
Resetting Control Characters 2-15
Using Immediate Commands 2-16
Enabling Immediate Commands 2-16
Sending Immediate Commands 2-16
Defining the Communication Settings Packet 2-18
Defining the Backfeed Control Packet 2-19
Special Considerations When Using Backfeed 2-20
Defining the Memory Configuration Packet 2-21
Checking Current Buffer Sizes 2-23
About Memory Buffers 2-23
Buffer Worksheet. 2-25
Buffer Allocation Considerations 2-25
Memory Considerations with Downloaded TrueType Fonts 2-26
Clearing Packets from Memory 2-26
Using the Font Packet 2-27
Uploading Format Header Information 2-29
DEFINING FIELDS 3-1
Defining the Format Header 3-2
Defining Text Fields 3-3
Defining Bar Code Fields 3-8
Defining Constant Text Fields 3-16
Defining Line Fields 3-20
Line Types 3-20
Defining Box Fields 3-23
DEFINING FIELD OPTIONS 4-1
Applying Field Options 4-2
Combining Field Options 4-2
Option 1 (Fixed Data) 4-3
Option 2 (Data Type Restrictions) 4-4
Option 4 (Copy Data) 4-5
Merging Fields 4-6
Sub-Fields 4-6
Option 30 (Pad Data) 4-7
Sample Use for Padding 4-7
Option 31 (Calculate Check Digit) 4-8
Option 42 (Price Field) 4-8
Option 50 (Bar Code Density) 4-9
Option 51 (PDF417 Security/Truncation) 4-10
Option 52 (PDF417 Width/Length) 4-11
Option 60 (Incrementing/Decrementing Fields) 4-12
Fixing the First Number in the Incrementing Sequence 4-12
Option 61 (Re-image Field) 4-13
Using Check Digits 4-14
Sum of Products Calculation 4-15
Sum of Digits Calculation 4-16
CREATING GRAPHICS 5-1
Overview of Bitmapped Images 5-2
Determining a Method 5-2
Designing Bitmapped Images 5-3
Special Considerations 5-3
Using the Hex Method 5-4
Using the Run Length Encoding Method 5-6
Determining How to Store the Image 5-7
Using Volatile RAM 5-7
Using Temporary Storage 5-8
Using Flash 5-8
Creating a Graphic Packet 5-8
Positioning the Graphic Image 5-9
Defining the Graphic Header 5-10
Creating Bitmap Fields 5-12
Creating Next-Bitmap Fields 5-13
Creating Duplicate Fields 5-14
Sample Hex Graphic Packet 5-15
Sample Run Length Graphic Packet 5-17
Placing the Graphic in a Format 5-19
Defining the Graphic Field. 5-19
Sample Bitmap Graphic Image 5-20
PRINTING 6-1
Defining the Batch Header 6-2
Defining the Batch Control Field 6-3
Defining Batch Data Fields 6-3
Using Special Characters in Batch Data 6-4
Merged or Sub-Fields 6-4
Incrementing Fields 6-4
Entering Batch Data for QR Code 6-5
Structured Append Mode 6-7
Structured Append QR Code Packet 6-8
Downloading Methods 6-8
Sequential Method 6-8
Batch Method 6-8
Batch Quantity Zero Method 6-9
Modifying Formats 6-10
Optional Entry Method 6-10
STATUS POLLING 7-1
Inquiry Request (ENQ) 7-2
Inquiry Response 7-2
ENQ Reference Table - Byte \#2 7-4
ENQ Reference Table - Byte \#3 7-6
Job Request 7-8
Job Response 7-9
Job Status 0, 1, 2 Response Table (Status 1 Codes) 7-12
Job Status 0, 1, 2 Response Table (Status 2 Codes) 7-13
DIAGNOSTICS AND ERRORS 8-1
Printing a Test Label 8-2
Reading a Test Label 8-3
Resetting Printers 8-3
If You Receive an Error Message 8-3
If the PC and Printer Are Not Communicating 8-4
Calling Technical Support 8-4
Additional Diagnostics Information 8-5
Data Errors 8-5
Format Errors 8-5
Batch Errors 8-8
Option Errors 8-8
Online Configuration Errors 8-10
Check Digit Errors 8-12
Graphic Errors 8-12
Communication Errors 8-13
Data Formatting Failures 8-15
Machine Faults 8-17
Flash Memory Errors 8-20
Hard Printer Failure Errors 8-21
PRINTER OPTIMIZATION 9-1
Adjusting the Print Quality 9-2
Reducing Imaging Time 9-3
General Format Tips and Hints 9-4
SAMPLES A-1
Sample UPCA Format Packet A-2
Sample MaxiCode Packets A-3
Mode 0 (Obsolete) Sample A-4
Mode 2 Sample A-5
Mode 3 Sample A-6
Sample Data Matrix Packets A-7
Square Data Matrix Packet A-7
Rectangular Data Matrix Packet A-7
Sample Data Matrix with Function 1 A-8
HangTag Example A-8
Tag Example A-8
Label Example A-9
Receipt Format Example A-9
Label Sample 2 A-10
Label Sample 3 A-10
FONTS B-1
Bitmap Font Information B-4
Monospaced Font Magnification B-4
Proportional Font Magnification B-6
Scalable Font Information B-8
TrueType Font Information B-9
Downloading TrueType Fonts B-9
Using International Fonts B-10
Selecting a Symbol Set B-11
International Font Sample B-12
Licensing Your Fonts B-12
Locating the Font Number in a Font Packet B-13
SYMBOL SETS/CODE PAGES C-1
Supported Symbol Sets and Code Pages C-1
Selecting a Symbol Set or Code Page C-1
Using Code 128 Function Codes C-2
Entering Extended Characters C-2
Using International Character Sets/Code Pages C-2
Internal Symbol Set C-3
ANSI Symbol Set C-4
Bold Character Set C-4
OCRA Character Set C-5
Code Page 437 (Latin U.S.) C-5
Code Page 850 (Latin 1) C-6
Code Page 852 (Latin 2) C-6
Code Page 855 (Russian) C-7
Code Page 857 (IBM Turkish) C-7
Code Page 860 (MS-DOS Portuguese) C-8
Code Page 1250 (Latin 2) C-8
Code Page 1251 (Cyrillic) C-9
Code Page 1252 (Latin 1) C-9
Code Page 1253 (Greek) C-10
Code Page 1254 (Turkish) C-10
Code Page 1255 (Hebrew) C-11
Code Page 1256 (Arabic) C-11
Code Page 1257 (Baltic) C-12
Code Page 1258 (Vietnamese) C-12
ASCII to Hexadecimal Conversion Chart C-13
Binary to Hex Conversion Chart C-16
Dot to Run Length Encoding Chart. C-20
ON (Black) Dots C-20
OFF (White Dots) C-20
FORMAT DESIGN TOOLS D-1
Online Configuration Worksheet D-2
Batch Worksheet D-3
Check Digit Worksheet D-4
GLOSSARY G-1

GETTING STARTED

Before you read this manual, review the printer information in the Operator's Handbook. This manual provides the necessary information to design, write and print a Monarch® Printer Control Language II (MPCLII) format.

About This Manual

This manual is for the developer who is creating the formats for the printer.

Use this manual to design and print your own custom formats on the Monarch® Sierra Sport2 ${ }^{\text {TM }}$ printer. This chapter creates a sample Monarch® Printer Control Language II (MPCLII) packet.

Standard Features

The following features are standard on the printer: 203 dots per inch (DPI) printhead, 1.89 inch by 12 inch maximum print image, print speed (2 or 3 inches per second), graphical LCD, 5 buttons (on/off, feed, and 3 context-sensitive), 512K RAM with an additional 2 MB flash memory.

Creating an MPCLII Format Packet

A format defines which fields appear and where the fields are printed on the label. The printer requires this information in a special form, using Monarch® Printer Control Language II (MPCL). This section describes how to create a sample MPCLII format packet.

Make sure supplies are loaded, you have a fully charged battery, the printer is connected to a host and ready to receive data, and you have software in the printer. Refer to your Operator's Handbook for more information.

1. Type the following format header in any text editor:
\{F,25,A,R,E,200,200,"FMT-25" |
2. Type the following constant text field:

C,140,40,0,1,2,1,w,C,0,0,"SAMPLE FORMAT",1 |
3. Type the following bar code field:

B, 1, 12, F, 85, 40, 1, 2, 40,5, L, 0
4. Type the following text field:

$$
T, 2,18, V, 50,50,1,3,1,1, B, L, 0,0,1 \quad\{ \}
$$

For detailed information about the format header, text, constant text, and bar code fields, see Chapter 3, "Defining Fields." For information about batch packets, see Chapter 6, "Printing."

You have created a format packet for your MPCLII printer. Now, a batch packet must be created before you can print the format.
5. Type the following batch header, after the text field line:

$$
\{\mathrm{B}, 25, \mathrm{~N}, 1 \text { \} }
$$

6. Type the following bar code data:

1,"02802811111" |
7. Type the following text field data:

2,"TEXT FIELD" $\}$

TEXT FIELD
8. Save your file as SAMPLE.FMT.
9. Import the packets into your communications software or send it to the printer's communication port through the Monarch® MPCL Toolbox Download Utility (available on our Web site).

Printer Memory

The printer has both RAM and flash memory. You can use one or both types of memory, depending on how you use your printer.

Using RAM

Use RAM for temporary storage. It is volatile; the contents are lost when you turn the printer off. The printer has 512 K of RAM.

RAM can contain formats, graphics, batches, and fonts. In the header of each packet, you specify to send it to RAM. Then, to download them to the printer from a host device. See Chapter 3, "Defining Fields," for more information.

Using Flash Memory

Use flash memory for permanent storage. It is non-volatile; the contents stay in place until erased. The printer has 2MB of flash memory, depending on your configuration.

To load flash memory, use either the Monarch® MPCL Toolbox Soft Font Utility (fonts) or the Label Designer software (formats). This software is available on our Web site.

Every time you download these packets into flash memory, another copy is made, even if it is already in memory. After doing this several times, you will eventually use up flash memory.

Starting with a Design

Before you create a format packet, you must design your label. There are several steps to designing a custom label:

1. Decide which fields should appear on your label. See "Determining Format Contents" for more information.
2. Determine your label size. Labels are available from us in a wide variety of sizes. Your application and the amount of data you need to print determines the supply size. Contact your Sales Representative for more information.
3. Draw a rough sketch of your label. You may want to draw several variations to see what works best. See "Drawing Rough Sketches" for more information.
4. Identify the field types that appear on your label. See "Considering Field Types" for more information.
5. Decide which fonts you want to use. See "Considering Fonts" for more information.
6. Fill out your Format Worksheet. See "Using the Format Worksheet" for more information.

At this point, you are ready to use your format.
7. Create a format packet, based on how you filled out your worksheet. See Chapter 3, "Defining Fields," for more information.

1-4 Getting Started

Determining Format Contents

Before you lay out your format, answer these questions. How large is your supply, which fonts do you want to use, do you want to include a bar code, and do you want to include graphics?

Determining the Print Area

The print area varies depending on the size of your supply. Below are the maximum and minimum print areas. Notice that the top edge (leading edge) of the supply exits the printer first. There is a non-print zone (0.055 inches) on either edge of the supply.

Unit of Measure	Max. Supply (Wid x Len)	Max. Print Area (WidxLen)	Min. Supply (Wid x Len)	Min. Print Area (Wid x Len)
English $(1 / 100$ ")	205×1200	189×1200	50×37.5	37.5×37.5
Metric $(1 / 10 \mathrm{~mm})$	521×3048	480×3048	127×95	95×95
Dots $(1 / 203$ dots $)$	416×2436	384×2436	102×76	76×76

The length you can print is dependent on the amount of memory you allocate for the image buffer. See "Defining the Memory Configuration Packet" in Chapter 2.

Note: For exact print area measurements of your supply, see the supply layout grids in Appendix D, "Format Design Tools."

Use the following formulas to convert inches to dots and metric:

```
Dots = inches x 203
Metric (1/10mm) = inches x 254
English (1/100 inch) = 100 x (dots/203)
Dots = Metric (1/10 mm) x . }79
```


Drawing Rough Sketches

After you decide what information you want to print, sketch how you want the information to appear on the label. Note any areas that are preprinted on the label, such as a logo.

As soon as you know what information to include on the label, and you have a rough sketch, you can use a supply layout grid to help you layout and size your label. If you do not want to use a grid, go to "Considering Field Types" to choose what information you want on your label.

Using Supply Layout Grids

A supply layout grid contains measurement markers. These markers help you accurately position information on your label.

Decide whether you want to design formats using English, Metric, or Dot measurements. Choose from the following grids:

- English

The English grid is measured in 1/100 inches.

- Metric

The Metric grid is measured in $1 / 10$ millimeters (mm).

- Graphic

The printer uses dots to print images on a label. The printhead has 203 dots per inch (dpi).

If you want to use the supply layout grids, a copy of each is in Appendix D, "Format Design Tools."

Supply Layout (Inches)

Considering Field Types

After you select a supply size, the next step in designing a format is to decide what information you want to print on the label. For example, you may want to print your company name, price of an item, and a bar code that combines information from other places. Everything you want to print falls into one of the following categories.

Field Type	Description	Examples
Text	Contains letters, numbers, or symbols you want to print.	item number, item description, department number, price, date
Bar Code	Used for printing bar codes that can be scanned.	item or serial numbers, zip codes, information you don't want to have visible to customers
Constant Text	Prints fixed characters that print without changing.	company name, company address
Line or Box	Highlights or separates items.	line marking out the regular price, border around the supply
Graphic	Contains a bitmap image or a compliance label overlay.	logos

All of the above field types except graphics are discussed in Chapter 3. See Chapter 5, "Creating Graphics" for information on including graphics in your format.

Considering Fonts

When working with fonts, you have three considerations: font appearance, font size (scalable or bitmapped), and font spacing (monospaced or proportional). See Appendix B, "Fonts," for samples of each font.

Using the Format Worksheet

The Format Worksheet is divided into sections that list the field types. Each section has boxes to fill in with parameters that define your format. A format worksheet is included in Appendix D, "Format Design Tools."

Filling in the Format Worksheet

Decide what type of field to use on your label.

1. Make a copy of the Format Worksheet.
2. Define the Format Header.
3. Define options as you require them. See Chapter 4, "Defining Field Options" for more information.

CONFIGURING THE PRINTER

This chapter discusses how to

- set communication parameters.
- upload the printer's configuration or font information.
- configure the printer using online configuration packets.
- use immediate commands to control the printer's operation at any time.

Setting Communication Parameters

Use the following information if you are connecting to the printer's 9-pin serial port.

The communication parameters at the printer must match those at the host, or you will not be able to communicate.

You can use the communication settings packet to set communication parameters for your printer.

On MS-DOS computers, you can use the MODE command to set communication values on your PC.

For example
MODE COM1:9600,N, 8,1
This command sets your host to these communication values:

- a baud rate of 9600
- no parity
- 8 bit word length
- 1 stop bit

Using MPCLII Conventions

Here are some guidelines to follow when using MPCLII.

MPCLII Punctuation

Use the following symbols when creating MPCLII packets:

Character	Decimal Value	Description
$\{$ (left bracket)	123	start of header
$\}$ (right bracket)	125	end of header
I (vertical bar)	124	field separator*
, (comma)	044	parameter separator
"ABC" (quotation marks)	034	Quotation marks enclose character strings. Empty quotes ("") identify null strings or unused fields.
'comment' (single quotation marks)	039	Grave accents enclose comments. Any data enclosed in grave accents is ignored. Do not embed comments within a quoted string. Grave accents are also used to reject mainframe data.

* The field separator is the split vertical bar, which we are representing as $\dot{\text { in this manual. The }}$ decimal value is 124. To enter this character, use the Shift key plus the Split Vertical Bar key on your computer's keyboard. Depending on your text editor, it may appear as a solid vertical bar or as a split vertical bar.

Note: These MPCL characters are the default.

Standard Syntax Guidelines

When creating MPCLII packets:

- Begin each packet with a start of header (\{).
- End each packet with an end of header (\}).
- Define no more than 200 fields in a format. Each i indicates one field. However, options are not counted as fields. The actual number of fields a format can have may be less, because the number of fields is limited by the available memory.
- The field number (0 to 999) must be unique. We recommend starting at 1 , instead of 0 .
- Do not use a field number more than once per format.
- Define all fields in the order you want to image/print them. The printer does not print in field number order.
- Separate all parameters with a Parameter Separator (,).
- End each field with a Field Separator (i).
- Enter all information in CAPITAL letters, except words or phrases within quotation marks.
- Include all parameters for a field unless documented as optional.
- Define options immediately after the field to which they apply.
- Multiple options can be used with most fields. Options can be used in any combination except as noted with each definition. Options are processed in the order they are received.
- Keep in mind that proportionally spaced fonts need wider fields than monospaced fonts. For variable field data, use a letter "W" to determine the maximum field size.
- Do not place a new line (return) or any other non-printing character within a field definition. However, a carriage return or line break after each | makes your formats easier to read.

$$
\begin{aligned}
& \mathrm{T}, 1,20, \mathrm{~V}, 30,30,1,1,1,1, \mathrm{~B}, \mathrm{C}, 0,0,0 \\
& \mathrm{~T}, 2,10, \mathrm{~V}, 50,30,1,1,1,1, B, C, 0,0,01
\end{aligned}
$$

- Spaces are ignored, except within character strings.
- Indenting options improves readability of your formats.

$$
\begin{aligned}
& \mathrm{T}, 1,18, \mathrm{~V}, 30,30,1,1,1,1, B, C, 0,0,0 \quad \\
& \mathrm{R}, 42,1
\end{aligned}
$$

- Use a tilde (~) followed by a 3-digit ASCII code in a quoted string to send function codes or extended characters or send the 8-bit ASCII code.

You can modify formats and fields with the optional entry method. See "Optional Entry Method" in Chapter 6 for more information.

2-4 Configuring the Printer

Using Online Configuration Packets

Use online configuration packets to change the printer's settings. You can send an individual configuration packet or a single packet containing all the configuration packets. Supply all parameters for each packet. Leave the parameters blank that you do not need to change. For example,

$$
\left\{\mathbf{I}, A_{1}, \ldots, I \mid\right\}
$$

prints a slashed zero and uses the last sent online System Setup parameters.

Make a copy of the online configuration worksheet in Appendix D, "Format Design Tools," and save the original. Packets A-M are listed on the worksheet.

When you turn off the printer, all the information in the online configuration packets is saved and used when the printer is turned back on. After you change printer configurations, you must resend the format, batch, or graphic to the printer before the changes take effect.

Always include an I, immediately after the left bracket \{and before the packet identifier (A, B, C, etc.). The I parameter identifies the data stream as a configuration packet.

Note: Include the I parameter with each packet if you are sending them individually. Include it only at the beginning of a data stream if you are sending multiple packets.

This is the syntax to use when you create online configuration packets:

Syntax

Syntax for single packet

```
{
I,
A, parameter 1...parameter 5
}
```

Start of Header Configuration Header
System Setup
End of Header
You can also add a configuration to RAM or specify units for supply, print, margin, and cut positions. If you use the optional parameters with the I packet, any online configuration packets following the split vertical bar (i) must specify distances using the selected units. However, the test labels display the units in dots, even if you entered them in English or Metrics units.

Syntax
\{header, ID\#, action, device | \}

1. header Constant I.
2. ID\#

ID. Use 0.
3. action
4. device

Storage Device. Use R (Volatile RAM).

2-6 Configuring the Printer
5. units Units. (Optional parameter.) Options:

E English (1/100 inches)
M \quad Metric ($1 / 10 \mathrm{~mm}$)
G Dots
$\begin{array}{ll}\text { Example } & \{\mathrm{I}, 0, \mathrm{~A}, \mathrm{R}, \mathrm{E}\{ \\ \mathrm{C}, 0,25,0,0,0!\}\end{array}$
Adds a configuration to volatile RAM and specifies English units. It also uses the default contrast, moves print 0.25 inches closer to the bottom of the supply and does not change the margin adjustment, prints at the default print speed, and uses the default printhead width.

If you do not use the optional parameters, the syntax for the online configuration packets does not change. For example,
$\{\mathbf{I}, \mathrm{C}, 0,50,0,0,0 \quad 1\}$
uses the default contrast, moves print 50 dots (0.25) inches closer to the bottom of the supply and does not change the margin adjustment, prints at the default print speed, and uses the default printhead width.

Example $\{\mathbf{I}, 0, \mathrm{U}, \mathrm{R} \mid\}$
Uploads the printer configuration from volatile RAM and returns the following to the host.

```
A,0,0,0,0,11
B,2,0,0,0,01
C,0,0,0,0,0,01
D,1,0,2!
E,"~123~044~034~124~125~126","","~013~010" |
F,3,1,0,0,1!
G,0,65,65!
M,R,R,160!
M,T,R,20!
M, I, R,320!
M, D,N,1280 !
M, F,N,640 !
M, V, R, 1280!
```

The parameters for each packet ($\mathbf{A}-\mathbf{M}$) are displayed. The remaining lines beginning with \mathbf{M} list the buffer sizes in $1 / 10 \mathrm{~K}$ for the Receive, Transmit, Image, Downloadable Fonts, Formats, and Scalable Fonts Buffers.

Configuration Syntax Guidelines

When creating a printer configuration packet:

- Follow the "Standard Syntax Guidelines" listed at the beginning of this chapter.
- The first character after the start of header (\{) is the configuration header (I).
- Download multiple configuration packets within one packet or download a single configuration packet.
- If you change any of the online configuration packets, resend the format packet to the printer, so the configuration changes take effect.
- Include the first five ANSI codes, at a minimum, in the control characters packet.
- Send configuration packets once per session (each time the printer is turned off and then back on), not with every format or batch packet.
- Make sure the communication settings at the host match those at the printer.

Making Print Adjustments

You can adjust where the printer prints on your supply by adjusting the supply, print, or margin positions. However, keep in mind the following:

- Supply adjustments across the width of your supply, such as the margin position, are based in dots. The printhead has 203 dots per inch.
- Supply adjustments for the length of your supply, such as supply position or print adjustment, are measured in 1/203 of an inch.

2-8 Configuring the Printer

Defining the System Setup Packet

Use the system setup packet (A) to select the power up mode, display language, print separators between batches, print a "slashed zero," and select the symbol set.

Syntax	$\{\mathbf{I}, \mathrm{A}$, powup_mode, language, sep_on, slash_zero, symbol_set $\bar{i}\}$
A1. A	System Setup Packet
A2. powup_mode	Online Mode. Enter 0.
A3. language	Display Language. Options: 0 English (default) 1 French 2 German 3 Spanish - ES
A	Batch Separators. The printer does not print batch separators. Enter 0.
A5. slash_zero	Slash Zero. Options: $0 \quad$ Print a standard zero (default) 1 Print a zero with a slash through it
A6. sy	Symbol Set. Options: $\mathbf{0}$ Internal (default) $\mathbf{1}$ ANSI $\mathbf{2}$ Code Page 437 (Latin U.S.) $\mathbf{3}$ Code Page 850 (Latin 1) $\mathbf{4}$ Code Page 1250 (Latin 2) $\mathbf{5}$ Code Page 1251 (Cyrillic) $\mathbf{6}$ Code Page 1252 (Latin 1) $\mathbf{7}$ Code Page 1253 (Greek) 8 Code Page 1254 (Turkish) 9 Code Page 1255 (Hebrew) 10 Code Page 1256 (Arabic) 11 Code Page 1257 (Baltic) 12 Code Page 1258 (Vietnamese) 13 DOS Code Page 852 (Latin 2) 14 DOS Code Page 855 (Russian) 15 DOS Code Page 857 (IBM Turkish) 16 DOS Code Page 860 (MS-DOS Portuguese) 17 Wingdings 18 Macintosh 19 Unicode

Note: The Standard, Reduced, Bold, OCRA and HR fonts only support the Internal Symbol Set (0). The CG Triumvirate ${ }^{\text {TM }}$ typefaces support only the ANSI and DOS Code Page 437 and 850 Symbol Sets. The scalable font (font 50) does not support Code Page 1256 (Arabic). Code pages 852-860 and 1250-1258 are for downloaded TrueType® fonts or the scalable font. Symbol set 19 requires a downloaded International TrueType font. TrueType fonts are designed to be regionally specific; therefore, all code pages may not be supported in a given font. See Appendix C for more information.

Example $\quad\{\mathbf{I}, \mathrm{A}, 0,0,0,1,0$ \}
Powers up the printer in the online mode, displays prompts in English, does not print a separator after each batch, prints zeros with slashes through them, and uses the internal symbol set.

Defining the Supply Setup Packet

Use the supply setup packet (B) to select supply type, printhead energy, feed mode, and supply position.

Syntax	$\{\mathbf{I}, \mathrm{B}$, supply_type, ph_energy, feed_mode, supply_posn $\}$
B1. B	Supply Setup Packet
B2. supply_type	Supply Type. Options:
	0 Black mark supply
	1 Die Cut/edge aperture supply (default)
	2 Continuous (non-indexed) supply
	Note: You must use continuous (non-indexed) supply in continuous mode You may need to adjust the print contrast (in the Print Control packet) based on the type of supply you are using.
B3. ph_energy	Printhead energy. Options:
	0 Standard Supplies (default)
	1 Special (fax paper)
	2 High Energy (linerless and synthetic)
	Note: We do not recommend printing serial bar codes with linerless supplies.
B4. feed_mode	Feed Mode. Options:
	0 Continuous operation (default) 1 On-demand mode (purchase optional)

B5. supply_posn Supply Position. Range: -99 to 99 in $1 / 203$ inch. 0 is the default. Adjusts the machine to print at the vertical 0,0 point on the supply. This adjustment accounts for mechanical tolerances from machine to machine. The supply position adjustment only needs to be made on the initial machine setup. Adjust the supply position if formats do not start at the 0,0 point on the supply. Increase the supply position to move print up, decrease to move print down on the label. To verify the 0,0 point, print a test label. See "Printing a Test Label" in Chapter 8 for more information.

You can not change the supply position while the printer is active. Changing the supply position will affect the print position, dispense position, and backfeed distance. Once the supply position is set, use the print control packet and backfeed control packet to adjust printing and the dispense position.

Example $\quad\{\mathbf{I}, \mathrm{B}, 0,0,1,10\}\}$
Indicates black mark and thermal direct stock has been loaded, causes the printer to operate in on-demand mode (purchase optional), and feeds the supply approximately .05 inches up before printing the format on each label (10/203 inches).

Defining the Print Control Packet

Use the print control packet (C) to set the contrast, print, and margin adjustment, print speed, and printhead width.

Syntax

C1. C
C2. contrast Print Contrast. Range: -28 to 40. 0 is the default. You may need to adjust this value depending on the type of supplies you are using. For example, linerless supplies require a higher print contrast, but receipt paper requires less contrast.

C3. print_adj Print adjustment (position). Range: -99 to 99 in $1 / 203$ inch. 0 is the default. Adjusts where data prints vertically on the supply. Increase the print position to move print up, decrease to move print down.

C4. margin_adj Margin adjustment (position). Range: -99 to 99 in $1 / 203$ inch. 0 is the default. Adjusts where data prints horizontally on the supply. Increase the margin position to move print to the right, decrease to move print to the left. Margin and print position are format adjustments. They will not effect the supply position, dispense position, or backfeed distance.

C5. speed_adj Print Speed in inches per second (ips). Options:
$0 \quad$ The printer determines the print speed automatically. This is the default.
20 Uses a print speed of 2.0 ips . This is the only valid speed for serial bar codes. If the speed is set differently, the printer changes to this speed to print serial bar codes.
30 Uses a print speed of 3.0 ips
C6. ph_width Width of the printhead in dots. Use $\mathbf{0}$.
Example $\quad\{\mathbf{I}, \mathrm{C}, 0,-20,-10,0,01\}$
Uses the default contrast, moves print 0.1 inch closer to the bottom of the supply (20/203 inches) and . 05 inch to the left on the supply (10/203 inches), the printer determines the print speed, and uses the default printhead width.

2-12 Configuring the Printer

Defining the Monetary Formatting Packet

The monetary formatting packet (D) selects the monetary symbols to print for a price field. Use the monetary formatting packet to select primary and secondary monetary symbols, and designate the number of digits to appear at the right of a decimal.

```
Syntax \{I, D, cur_sym,secondary,decimals : \}
D1. D Monetary Formatting Packet
D2. cur_sym Currency Symbol. Options:
    0 No symbol
    1 USA (\$, Dollar- default)
    2 UK (£, Pound)
    3 Japan (¥, Yen)
    4 Germany (오, Deutsche Mark)
    5 France (F, Franc)
    6 Spain (P, Peseta)
    7 Italy (L., Lira)
    8 Sweden (Kr, Krona)
    \(9 \quad\) Finland (M, Markka)
    10 Austria (§, Shilling)
    11 India (Rs, Rupee)
    12 Russian (\%, Ruble)
    13 Korean (W, Won)
    14 Thai (B, Baht)
    15 Chinese ( \(¥\), Yuan)
    16 Euro-Dollar ( \(€\) )
```

Note: To use these symbols, select the internal symbol set.
D3. secondary Secondary Sign. Secondary symbols only print if you designate at least
one decimal place. Options:
$0 \quad$ No secondary sign (default)
1 Print secondary sign
D4. decimals Number of digits to the right of the decimal. Options:
$0 \quad$ No digits
1 One digit
2 Two digits (default)
3 Three digits
Example $\{\mathbf{I}, \mathrm{D}, 1,1,2 \mid\}$

Prints the dollar sign, uses a secondary symbol, and places two digits to the right of the decimal.

Defining the Control Characters Packet

Use the control characters packet (E) to change the MPCLII control characters, enable and disable the immediate commands, and change the default terminator character for job requests and ENQ's.

Changes take effect with the first character following the end of header character \} of the configuration packet. Each control character must be unique and cannot appear anywhere else in your packet, except within quotation marks. You can customize the trailer characters to work with your host.

Note: Wait two seconds for the new characters to take effect before sending packets using the new characters.

Use the following syntax for the control characters packet. Notice all but the first parameter are within quotation marks.

Syntax
\{I, E, "ANSI_cd","string1","string2" | \}
E1. E Control Characters Packet

E2. "ANSI_cd"	~123 ~044 ~034 ~124 ~125 ~126 def. ch.	Start of header Parameter separator Quoted strings Field separator End of header Data escape character (optional) Immediate command ch Up to any 3 characters range. The character m command can be used. normally used.	(left bracket) (comma) (quotes) (pipe sign) (right bracket) (double tilde) cter (optional). 0 to 255 decimal be defined before this caret (~ 094) is

Note: "ANSI_cd" includes seven separate parameters. The first five paramèters are required. The other parameters are optional.

E3. "string 1" Terminator for status requests and ENQ requests. Up to any 3 characters in the 0-255 decimal range. The default is "013". Sending "" disables this sequence.

E4. "string 2" Terminator for job requests and data uploads. Up to any 3 characters in the 0-255 decimal range. The default is none. Sending "" disables this sequence.

2-14 Configuring the Printer

After you change these parameters, all packets, including any future configuration packets, must use the new control characters. We recommend using the tilde and ASCII character code sequence when sending this packet multiple times. Also, set the packet delimiters to characters within the 21 hex to 7 E hex range.

You must send the control characters packet to enable the immediate commands. An immediate command executes immediately, even if it is embedded within quotation marks, and all data following the command in the string is ignored.

Example \{I, E, "~123~063~034~124~125~126~094" |\}

Changes the parameter separator character from , to ?. The other control characters remain unchanged. It also enables the immediate commands by defining the ${ }^{\wedge}$ symbol as the command identifier.

Resetting Control Characters

You can change the characters in the previous example back to their original settings by downloading this packet:
\{I?E?"~123~044~034~124~125~126~094"| \}
Notice that the parameter separator is ? in this packet. This is the parameter separator that was set before this packet. Once the packet is received by the printer, the new parameter separator (a comma, in this case) is valid.

Be careful when using this feature. If you forget what the control characters were changed to, print a test label. (The test label lists the current control characters.) See "Printing a Test Label," in Chapter 8 for more information.

Using Immediate Commands

Immediate commands effect printer operation as soon as the printer receives them, even if they are included within a packet or used inside quotation marks.

You can use immediate commands to change immediate command or status polling control characters, reset the printer, or cancel and repeat batches.

Enabling Immediate Commands

When the printer is first turned on, these commands are not available. To use these commands, you must first send the control characters packet and define the immediate command control character. The immediate command control character is saved when you turn off the printer. Once the immediate command control character is defined, the immediate commands are enabled.

Sending Immediate Commands

Immediate commands consist of a three- or four-character sequence you can send in a packet or embed in your application. Each command must be sent separately.

Syntax control character_immediate command
The printer can accept only one immediate command at a time. Sending a command before the previous one is completed can result in an error.

Example
 ${ }^{\wedge} \mathrm{CB}$

Immediately cancels the batch currently printing unless an error exists in the printer. This example assumes that the defined immediate command control character is the caret (\wedge).

The table represents the defined immediate command control character as ${ }^{\wedge}$ and the defined status polling control character as d. You may define these characters to suit your needs.

To use the immediate command control character or the status polling character within your data, use the tilde sequence

2-16 Configuring the Printer

Command	Parameter
${ }^{\wedge} \mathrm{CA}$	Cancels all the batches in the queue unless an error exists on the printer.
${ }^{\wedge} \mathrm{CB}$	Cancels only the current batch being printed unless an error exists.
\wedge DD or ${ }^{\wedge} \mathrm{DCd}$	Disables the MPCL data escape character (the tilde) and inhibits MPCL from acting on ANY data escape sequence from the host. Sets the MPCL data escape character to the ASCII value given by the d parameter. The value can be any ASCII character.
\wedge ^A	Aborts an error condition. This command is the same as pressing the left (4) button to clear an error. May need to be sent multiple times. Use ${ }^{\wedge}$ RB to reprint batch. CAUTION: This command causes the current batch to stop and the condition that caused the error to remain uncorrected.
${ }^{\wedge} \mathrm{ED}$	Disable error reporting.
${ }^{\wedge} \mathrm{EA}$	Enable error reporting. Sends an "E" plus the error number to the serial port, so a print server can track errors. For example, error 704 is sent to the serial port as E704.
${ }^{\wedge} \mathrm{ER}$	Resets the error. This command is the same as pressing if to acknowledge an error. Normal operation resumes.
${ }^{\wedge} \mathrm{FD}$	Feeds a label when printer is idle. Simulates the operation of pressing \ddagger and dispenses the next label if printer is in the on-demand mode. Note: Printer ignores this command if printing.
^ID or ^ICd	Disables the Immediate Command feature by turning off the Immediate Command escape character. Sets the Immediate Command escape character to the ASCII value given by the d parameter. The value can be any ASCII character. Use ${ }^{\wedge} I E$ to enable immediate commands.
$\wedge \mathrm{MC}$	Returns the customer ID or RPQ version to the host. (00 to 99)
$\wedge \mathrm{MD}$	Returns the printhead dot density to the host. $00=203 \mathrm{dpi}$
${ }^{\wedge} \mathrm{MF}$	Uploads the MIF file to the host.
^MI	Returns the customer ID or RPQ revision level to the host. (00 to 99)
$\wedge \mathrm{Mm}$	Returns the model number to the host. $22=9460$
${ }^{\wedge} \mathrm{MP}$	Returns the prototype number to the host. (00 to 99)
$\wedge \mathrm{MR}$	Returns the revision number to the host. (00 to 99)
$\wedge \mathrm{MS}$	Returns the flash file system information.
$\wedge \mathrm{Mv}$	Returns the version number to the host. (00 to 99)
$\wedge \mathrm{PR}$	Resets the printer. This command takes five seconds to complete and then the printer is ready to receive data. It has the same effect as turning off and then turning on the printer. Note: Command should be used only when the printer is not printing.
${ }^{\wedge} \mathrm{RB}$	Repeats the last printed batch, printing the same number of labels as specified in the original batch. This command does not work if using batch separators. Note: Printer ignores this command if printing.

Command	Parameter
\wedge ^RS	Resynchronizes supply when supply roll is changed. Note: Printer ignores this command if printing.
\wedge ^SD or ^SCd	Disables the status polling feature by turning off the status polling control character. Sets the status polling control character to the ASCII value given by the d parameter. The value of d can be any ASCII character.
\wedge ^TP	Prints a test label. Note: Printer ignores this command if printing.

Note: To use the immediate command control character or the status polling character within your data, use the tilde sequence.

Defining the Communication Settings Packet

Use the communication settings packet (F) to set the baud rate, word length, stop bits, parity, and flow control for serial communications. Changing the communication settings takes approximately two seconds. Communications sent during this interval will be lost. Make sure the host communication values match the values on the printer and the host is capable of communicating at the speed you select for the printer.

Do not add any characters, such as a carriage return/line feed, in your communication settings packet or communications errors may occur.

Syntax $\begin{aligned} & \{\mathbf{I}, \text { F,baud, word_length, stop_bits, parity, } \\ & \text { flow control }\}\end{aligned}$
F1. F Communication Settings Packet
F2. baud Baud Rate. Options:

$\mathbf{0}$	1200	$\mathbf{1}$	2400
$\mathbf{2}$	4800	$\mathbf{3}$	9600 (default)
$\mathbf{4}$	19200	$\mathbf{5}$	38400

F3. word_length Word Length. Options:
0 7-bit word length (odd or even parity only)
1 8-bit word length (default)
F4. stop_bits Stop Bits. Options:
$0 \quad$ 1-stop bit (default)
1 2-stop bits

2-18 Configuring the Printer

F5. parity	Parity. Options:	
	0	None (default)
	$\mathbf{1}$	ODD parity
	$\mathbf{2}$	EVEN parity

F6. flow_control Flow Control. Options:

$\mathbf{0}$	None	2	(CTS)
$\mathbf{1}$	DTR (default)	$\mathbf{3}$	XON/XOFF

> Note: If you use the DOS COPY command to download your formats, set "Flow Control" to DTR (not XON/XOFF).

Example $\quad\{\mathbf{I}, \mathrm{F}, 3,1,0,0,1 \mid\}$
Uses 9600 baud, an 8-bit word length, one stop bit, no parity, and the DTR mode.

Defining the Backfeed Control Packet

Use the backfeed control packet (G) to enable or disable the backfeed option, set the dispense position and the backfeed distance. Backfeed works by advancing each printed label to the desired dispense position. Once that label is removed, the next label to be printed is backed up underneath the printhead. In continuous mode, only the last label in the batch is advanced to the dispense position. You may need to adjust the dispense position to allow labels to be removed, die cut labels to be removed easily, or to prevent them from falling off.

Do not use backfeed (normal or extended) with supplies less than 0.75 inches. We recommend using 0.5 -inch gap supplies in peel mode when backfeed is disabled.

The dispense position and backfeed distance are optional parameters and do not have to be specified. However, they allow for greater precision when positioning the supply. You cannot change the backfeed distance while the printer is active.

Syntax	\{I,G,action, dis_pos,bkfd_dis ${ }_{\text {l }}$ \}
G1. G	Backfeed Control Packet
G2. action	Action. Options: 0 disable backfeed (default) 1 enable backfeed
G3. dis_pos	Dispense Position. Adjusts the stopping point of the label. 10 to 200 dots (default 65 dots).
G4. bkfd_dis	Backfeed Distance. Amount to move label backwards. 10 to 200 dots (default 65 dots). This distance can not be greater than the dispense position. The backfeed distance should equal the dispense position. An exception is if you are tearing instead of peeling. Then, the backfeed distance must be 30 dots (. 150 inches) less than the dispense position. However, you will have a 30 dot non-print zone on your supply. The 30 -dot difference accounts for improper tearing of butt cut supplies, because you do not want any exposed adhesive under the printhead.

$$
\text { Example } \quad\{\mathbf{I}, \mathrm{G}, 1,50,10 \quad \mid\}
$$

Enables backfeed and sets the dispense position to 0.25 inches (50/203) and the backfeed distance to 0.05 inches (10/203).

Special Considerations When Using Backfeed

Make a note of the following items:

- Be careful when tearing supplies, because the adhesive can adhere to the printhead or platen roller.
- Backfeed effects each label in the on-demand mode or the first and last label of the batch in continuous mode.
- When backfeed is enabled and multiple batches are sent, the printer may not backfeed between each batch.
- Backfeed should only be used when you need to advance labels to the desired dispense point.
- Backfeed does not interfere with the supply, print, or margin positions you have set.
- If the supply inter-label gap is not between .07 inch to .15 inch (14 to 30 dots), you must adjust the dispense position and backfeed distance accordingly.

2-20 Configuring the Printer

See the following graphic for a representation of the following adjustments: dispense position, backfeed distance, supply position, print position, and margin position.

Contact Technical Support if you have problems adjusting where the format prints on the supply.

Defining the Memory Configuration Packet

Use the memory configuration packet (M) to customize the size of your printer's buffers, which gives you greater flexibility in your formats.

Memory must be allocated in $1 / 2 \mathrm{~K}$ increments. The memory configuration packet does not accept decimals, so enter whole numbers. Multiply the amount to reallocate (in K) by 10. For example,

To reallocate (in K)	Enter this amount
1	10
1.5	15
2	20
2.5	25
153	1530
229.5	2295

Each buffer's allocated memory remains in effect until that buffer is reallocated. For this reason, you may want to reallocate all the buffers when reallocating any buffer. If you reallocate more memory than you have available, you will receive an error.

Syntax
M1. M Memory Configuration Packet
M2. buffer

M3. device
M4. buffer size
Buffer type. Options:
D Downloadable Fonts
F Format
I Image
R Receive
T Transmit
V Scalable (vector) fonts
Storage type. Use R (volatile RAM).
Buffer size. Options:
\{I, M, buffer, device,buffer_size | \}

Buffer	Range	Default
Transmit	$.5 \mathrm{~K}-4 \mathrm{~K}$	10 K
Receive	$2 \mathrm{~K}-16 \mathrm{~K}$	40 K
Image	$16 \mathrm{~K}-114 \mathrm{~K}$	38.9 K
Downld. Fonts	$64 \mathrm{~K}-128 \mathrm{~K}$	64 K
Scalable Fonts	$10 \mathrm{~K}-128 \mathrm{~K}$	64 K
Formats	$16 \mathrm{~K}-128 \mathrm{~K}$	16 K
Internal	cannot reallocate	cannot reallocate

Note: For the scalable font buffer, specify 10 if you do not use the buffer. When using the buffer, specify a minimum of 40 . The larger the number you specify for the image buffer, the longer your formats can be. As a rule of thumb, divide the value you select by 100, and round up to the next whole number. That number will be the length in inches.

Example $\{\mathbf{I}, \mathrm{M}, \mathrm{I}, \mathrm{R}, 1530$ |\}
Stores the image buffer in volatile RAM and allocates 153 K for it.

2-22 Configuring the Printer

Checking Current Buffer Sizes

Send a configuration upload packet to check the sizes of your current buffers. See "Configuration Packet Header" for more information. After you check your current buffer sizes you can begin reallocating memory.

If you want to increase your image buffer and you will not be using scalable fonts, add that memory into your image buffer.

Example

$\{I, M, R, R, 20:$	Receive buffer	2 K
$M, T, R, 10$	Transmit buffer	1 K
$M, D, N, 80$	Downloadable fonts	8 K
$M, V, R, 160$	Scalable fonts buffer	16 K
$M, I, N, 3200$	Image buffer	320 K

Make sure memory is available before adding memory to a buffer. In the above example, if the image buffer ($\mathrm{M}, \mathrm{I}, \mathrm{N}, 3200$) was defined before the downloadable fonts and scalable fonts buffers (M,D,N,80 and M,V,R,160) were defined, an error would have occurred.

About Memory Buffers

Transmit Buffer \quad| Used to send ENQ, job, and upload responses. This |
| :--- |
| buffer must be allocated as volatile (R) RAM. |

Receive Buffer Used to save data received from the host before it is processed by the printer. Changing this buffer size affects the amount of data the printer can receive without using flow control. This buffer must be allocated as volatile (R) RAM.

Image Buffer
Used to image the current format. Use the formula below to calculate the approximate image buffer size.

10K x Length
Length is the length of your label in inches.
Example $\quad 10 \mathrm{~K} \times 10=100$
(Multiply by 10 and round up)

$$
100 \mathrm{~K} \times 10=1000
$$

Enter 1000 for your Image buffer.
Format Buffer Used to store formats, batch data, and graphics. Use the following formula to calculate the required format buffer size:

Linecount x 50/1024

Linecount is the number of lines in your format packet including the format header and all the options.

The result of the above calculation is in kilobytes. Formats remain in memory when you turn off the printer.

Downloadable Fonts Buffer

Used to store downloaded soft (bitmapped or TrueType) fonts. To determine the size of your downloadable fonts, send a font packet. For TrueType fonts, the file size, in bytes, is the minimum amount needed in this buffer. See "Using the Font Packet" for more information.

Scalable (Vector) Used to image the scalable or downloaded (TrueType or Fonts Buffer
bitmapped) font characters. Increasing this buffer size allows more characters to be saved in cache memory, so the characters do not have to be re-built the next time they are printed. Use 10 if you are not using scalable/TrueType fonts. This buffer must be allocated as volatile (R) RAM.
The printer does not print the fonts if there is not enough memory in this buffer to image them.

Buffer Worksheet

Make copies of this page to use as a buffer worksheet.

Buffer Allocation Considerations

Keep these items in mind when allocating memory.

- Do not allocate more memory than what is available.
- Free memory from one buffer before you add it to another buffer.
- Reallocate all the buffers if you need to reallocate any buffer.
- Send all buffer (re)allocations in one packet. The printer evaluates each individual buffer allocation separately. If one buffer allocation is invalid, the entire packet is invalid. If you define a buffer size that exceeds the maximum value, an error occurs. However, no information is lost.
- Whenever the printer accepts a memory configuration packet, it takes effect immediately, causing a printer reset. Any information contained in the buffers is lost. Resend your formats, batches, graphics, or fonts to the printer.
- If you remap your image buffer, make sure the length and width specified in your format header are not too large for the current image buffer. In other words, if you remap for a 2×6 inch label, you cannot print a 2×10 inch label without receiving an error, until you change your format header or increase your image buffer.

Memory Considerations with Downloaded TrueType Fonts

- The size of the TrueType font file, in bytes, is the minimum amount of memory you must have available in the downloadable fonts buffer.
- The scalable (vector) fonts buffer is used to image the downloaded fonts (TrueType). If you are using several downloaded TrueType fonts, you may need 100 K or more in this buffer. The printer does not print the fonts if there is not enough memory in the scalable (vector) fonts buffer.
- To use large point sizes (greater than 60 point), you must reconfigure memory and increase the size of the scalable (vector) fonts buffer.

Clearing Packets from Memory

You may want to remove packets from the printer to increase memory storage capacity or if the formats/fonts are no longer needed. In some cases, turning the printer off may clear the packets from memory. If not, send a format clear packet.

Syntax	\{header, packet\#, action, device i \}
1. header	Identifies the packet. Options:
	A Check Digit Scheme
	F Format
	G Graphic
	W Font
2. packet\#	Identification number of the packet to clear (1 to 999) or font number (0 to 9999). 0 is for all fonts.
3. action	Action. Enter C to clear the packet.
4. device	
	F Flash
	R Volatile RAM
Example	$\{\mathrm{F}, 1, \mathrm{C}, \mathrm{R} \mid\}$
Clears For	\#1 from volatile RAM.

2-26 Configuring the Printer

Using the Font Packet

You can use a font packet to add or clear downloaded fonts from memory, upload your font buffer, or upload the cell size information for a particular font. The font packet is useful when you are downloading fonts. If you are using downloaded fonts, the font number and the number of bytes each downloaded font uses is listed.

This packet does not list the number of bytes the standard printer fonts use.
Use the MONARCH® MPCL Toolbox Font Utility (available on our Web site) to create the font header and data. Refer to the online help for more information.

Syntax $\left\{W, f o n t \#, a c t i o n, d e v i c e, d a t a _l e n g t h, d a t a _r e c o r d i\right\}$
W1. W Writable Font Header.
W2. font\# The font identifier from $\mathbf{0}$ to $\mathbf{3 2 0 0 0}$.
$\mathbf{0}$ is for all fonts. $\mathbf{1}$ to $\mathbf{5}$ digits is the font number.
Example: 3 is the standard printer font, Bold.
W3. action Action. Options:
A Adds the specified font.
C Clears all or specified fonts, except ones in flash.
H Uploads font size information.
M Uploads font memory usage information.
W4. device Device. Options:
R Volatile RAM
Z All devices (use for upload).
W5. data_length The length of the font data. The range is 68 to 16384 . (optional)

If you are creating fonts, you need to have font data included with this packet.

W6. data_ Multiple data records define the font. The first character is either an
\mathbf{H} (hex) or an \mathbf{R} (run-length), referring to the algorithm. The rest of the record is up to 2710 characters of font data in double quotes. Separate the algorthm and the data with a comma, and end the record with \quad.

Example $\{\mathrm{W}, \mathrm{O}, \mathrm{M}, \mathrm{R} \mid\}$
Selects all fonts and checks the memory usage in RAM. The printer returns the following to the host:

```
{W, 0,M,R \
Number of bytes free, Number of bytes usedi}
```

Example $\{\mathrm{W}, \mathrm{O}, \mathrm{H}, \mathrm{Z} \mid\}$
Selects all fonts and uploads the font size information for any downloaded fonts.

The 9855 printer returns the following to the host:

* The CG Triumvirate ${ }^{T M}$ typefaces are trademarks of Monotype Imaging, Inc.

2-28 Configuring the Printer

Spacing
Type
Baseline
Cell Width

Cell Height
Nominal Width
Nominal Height
Inter-Character Gap

Printhead Density

Monospaced (0) or proportional (1).
Bitmapped (0) or scalable (1).
Bottom of the font.
Horizontal number of dots to contain the widest character.

Vertical number of dots to contain the tallest character.
Average width for lower-case letters.
Average height for lower-case letters.
Default spacing between characters in monospaced fonts.

Shows that a 203 (0) dpi printhead is used. The scalable font (font 50) does not report a value for printhead density.

Uploading Format Header Information

You can upload format header information from the formats in memory to check the supply length and width for each format.

Syntax \{header,format\#, action, device $\mid\}$
F1. header Format Header
F2. format\# Format number from 0 to 999.0 is for all formats in memory.
F3. action Action. Options:
A Adds the specified format
C Clears the specified format
H Uploads format header information
F4. device Device. Options:
R Volatile RAM
Z All devices (use for upload)

Example $\{\mathrm{F}, \mathrm{O}, \mathrm{H}, \mathrm{Z}$ | $\}$
Selects all formats in memory and returns the following:
Example

```
{F,O,H,Z |
Fmt_1,406,406 ।
Fmt_10,324,406 ;
Fmt_15,812,812 i
Fmt-20,305,609 ;
Fmt_25,1218,406 {}
```

Displays the format number, supply length and supply width (in dots) for each format in memory.

Example $\{\mathrm{F}, 1, \mathrm{H}, \mathrm{Z} \mid\}$

Selects format1 and returns the following to the host:

```
{F,1,H,Z \
Fmt_1,406,406 {}
```

Displays the supply length and supply width (in dots) for format1.

DEFINING FIELDS

This chapter provides a reference for defining

- the format header
- text and constant text
- bar code fields
- line and box fields.

A Format Header begins a format file.

F8. "name" Format name (optional), 0 to 8 characters, enclose within quotation marks.

Syntax

F1. F
F2. format\#
F3. action
F4. device

F5. measure

F6. length

F7. width

Example
\{F,format\#, action, device, measure, length,
width,"name" |

Format Header.
Unique number from 1 to 999 to identify the format.
Action. Enter \mathbf{A} to add the format to the printer.
Format storage device. Options:
F Flash
R Volatile RAM
Unit of measure. Options:
E English, measured in 1/100 inches
M Metric, measured in $1 / 10 \mathrm{~mm}$
G Graphic, measured in dots
Supply length in selected units. Measure supply from the leading edge of one label to the leading edge of the next label.

English	$\mathbf{0}-\mathbf{1 2 0 0}$
Metric	$\mathbf{0}-\mathbf{3 0 4 5}$
Dots	$\mathbf{0}-\mathbf{2 4 3 6}$

Supply width, from left to right, in selected units.

English	$50-205$
Metric	$127-521$
Dots	$102-416$

Metric 127-521
Dots 102-416

Adds Format 1 ("TEXTILES") to the printer. It uses a three inch long by two inch wide label.

3-2 Defining Fields

Defining Text Fields

Create a separate definition for each text field. If text falls on two lines, each line of text requires a separate definition.

Syntax

T1. T
T2. field\#
T3. \# of char
T4. fix/var

T5. row

```
T,field#,# of char,fix/var,row,column,
gap,font,hgt mag,wid mag,color,alignment,
char rot,field rot,sym set |
```

Text Field.
Unique number from 1 to 999 to identify this field.
Maximum number of printed characters (0 to 2710) in the field.
Fixed or variable length field. Options:
$\begin{array}{ll}\text { F } & \text { Fixed length } \\ \text { V } & \text { Variable length }\end{array}$
For monospaced fonts, distance from bottom of print area to the pivot point. The pivot point varies depending on how text is justified.

Lett/Center/Right-Juatifled

Balanced

End-Justifled

For proportionally spaced fonts, distance from bottom of print area to baseline of characters in field.

English	$\mathbf{0}-1200$
Metric	$0-3045$
Dots	$0-2436$

T6. column
Distance from the left edge of the print area to the pivot point to find the column location.

English	$0-189$
Metric	$0-479$
Dots	$0-383$

T7. gap Number of dots between characters 203 dpi (or 300
 dpi for 9855/9860 printers). Range: 0 to 99.

Note: For monospaced fonts, the additional spacing is added to the existing inter-character gap. This is also true for proportionally spaced fonts, but remember that the inter-character gap varies with character combinations.

Any number other than $\mathbf{0}$ or the default number affects your field width. Default spacing:

Standard	3 dots
Reduced	1 dot
Bold	3 dots
OCRA-like	3 dots
CG Triumvirate ${ }^{T M}$	
Typeface Bold	varies with each letter
CG Triumvirate ${ }^{T M}$ Typeface	varies with each letter

T8. font

T9. hgt mag

Style of font. Options:

$\mathbf{1}$	Standard	$\mathbf{6}$	HR2
$\mathbf{2}$	Reduced	10	CG Triumvirate
$\mathbf{3}$	Bold Typeface Bold		
$\mathbf{4}$	OCRA-like	11	CG Triumvirate TM Typeface
$\mathbf{5}$	HR1	50	EFF Swiss Bold (scalable)

Or a valid downloaded font selector number.
Fonts 5 and 6 are only for numeric data.
The CG Triumvirate ${ }^{\text {TM }}$ typefaces support only the ANSI and DOS Code Page 437 and 850 Symbol Sets. The scalable font does not support Code Page 1256 (Arabic). See Appendix C for more information.

Height magnifier, 1 to $\mathbf{7}$ times ($\mathbf{4}$ to $\mathbf{2 5 5}$ points for the scalable font - font 50 or downloaded TrueType fonts). Use a magnifier of 1 with proportionally spaced fonts, because characters lose smoothness at higher magnifications. See Appendix B, "Fonts," for more information about fonts.

3-4 Defining Fields

T10. wid mag

T11. color

Width magnifier, 1 to 7 times (4 to 255 points for the scalable font - font 50 or downloaded TrueType fonts). Proportionally spaced fonts do not have a set width. To estimate the size of your field, use the letter " W " for the widest field or an "L" for an average width field. Find your selected font and the desired width in Appendix B, "Fonts."

Note: To use large point sizes (greater than 60 point), you must reconfigure memory and increase the size of the scalable (vector) fonts buffer.

There are two types of field color overlay attributes:
Transparent The overlay field (text or constant text) does not block out (or "erase") existing fields.
Opaque The overlay field blocks out (or "erases") existing fields.
Options for standard printer fonts:
B Opaque, Normal, Black, Normal
D/R/W Opaque, Normal, White, Normal
0 Transparent, Normal, Black, Normal
Options for scalable fonts:
A/N Opaque, Normal, Black, Bold
B/O Opaque, Normal, Black, Normal
E/S Opaque, Italics, Black, Bold
F/T Opaque, Italics, Black, Normal

Note: Solid black print should not exceed 30% on a given square inch of the label, or the printhead life may be decreased.

Field placement in the packet is an important consideration when using field color attributes. If a line field is defined before the overlay (text or constant text) field, the line field is blocked out by the overlay field, depending on the overlay field's color attribute. If a line field is defined after the overlay field, the line field is not blocked out by the overlay field, regardless of the overlay field's color attribute.

Options:
L Align on left side of field.
C Center text within field (monospaced fonts only)
$\mathbf{R} \quad$ Align on right side of field (monospaced fonts only)
B Align at midpoint of field
E Align at endpoint of the field
Use L, B, or E for any font.
T13. char rot Character rotation. The field or supply does not rotate, only the characters do. Options:

0 Top of character points to top of field
1 Top of character points to left of field
2 Top of character points to bottom of field
3 Top of character points to right of field

T14. field rot Field rotation. Field rotation rotates the whole field, not just the characters. Rotation is affected by the pivot point, which varies depending on how text is justified. Lower left corner of field is the pivot point. Options:

0 Top of field points to top of supply
1 Top of field points to left of supply
2 Top of field points to bottom of supply
3 Top of field points to right of supply

MONARCH
Field

T15. sym set Symbol set. Use 0 for the Internal Symbol Set.
For scalable fonts, use:
1 ANSI Symbol Set
102 Unicode (user input) for particular mapping
437 DOS Code Page 437 (Domestic)
850 DOS Code Page 850 (International)
852 DOS Code Page 852 (Latin 2)
855 DOS Code Page 855 (Russian)
857 DOS Code Page 857 (IBM Turkish)
860 DOS Code Page 860 (MS-DOS Portuguese)
1250 Code Page 1250 (Latin 2)
1251 Code Page 1251 (Cyrillic)
1252 Code Page 1252 (Latin 1)
1253 Code Page 1253 (Greek)
1254 Code Page 1254 (Turkish)
1255 Code Page 1255 (Hebrew)
1256 Code Page 1256 (Arabic)
1257 Code Page 1257 (Baltic)
1258 Code Page 1258 (Vietnam)
Note: The Standard, Reduced, Bold, OCRA and HR fonts only support the Internal Symbol Set (0). The CG Triumvirate ${ }^{\text {TM }}$ typefaces support only the ANSI and DOS Code Page 437 and 850 Symbol Sets. The scalable font (font 50) does not support Code Page 1256 (Arabic). Code pages 852-860 and 1250-1258 are for downloaded TrueType fonts or the scalable font. Code page 102 requires a downloaded International TrueType font. TrueType fonts are designed to be regionally specific; therefore, all code pages may not be supported in a given font. See Appendix C, "Symbol Sets/ Code Pages" for more information.

Example $\quad \mathrm{T}, 2,10, \mathrm{~V}, 50,80,0,1,1,1, \mathrm{~B}, \mathrm{C}, 0,0,0 \quad 1$
Defines a text field (field \#2) with a variable length of up to 10 characters. The field begins at row 50, column 80. There is no additional gap between characters, and the Standard font is used without any additional magnification. The printing is black on white and centered. No field or character rotation is used. The internal symbol set is used.

Defining Bar Code Fields

Each bar code field requires a separate definition.

Syntax

B1. B
B2. field\#
B3. \# of char

```
B,field#,# of char,fix/var,row,column,
font,density,height,text,alignment,field rot ।
```

Bar Code Field.
Unique number from 1 to 999 to identify this field.
Maximum number of characters. If the bar code uses a check digit, allow an extra character for the check digit. The actual maximum number of characters is limited by the size of the label and bar code density. Range: 0 to 2710.

For Quick Response bar codes, this number includes header information. The maximum depends on the type of characters entered for the batch data and differs for the two models of the bar code.

Data Type	Model 1	Model 2
Numeric Data	1167	2710
Alphanumeric data	707	2710
8-byte data	486	2710
Kanji data	299	1817

Note: The maximum number of characters depends on the selected level of error correction. As you increase the error correction level, the maximum number of characters decreases.

B4. fix/var Fixed (F) or variable (V) length field.

Bar Code	Number of Characters	Fixed or Variable
UPCA	12	F
UPCA+2	14	F
UPCA+5	17	F
UPCA+Price CD	12	F
UPCE	7	F
UPCE+2	9	F
UPCE+5	12	F
EAN8	8	F
EAN8+2	10	F
EAN8+5	13	F
EAN13	13	F
EAN13+2	15	F
EAN13+5	18	F
EAN13+Price CD	13	F
POSTNET	9 or 11	F
Interleaved 2 of 5 or Interleaved I 2 of 5 with Barrier Bar	0-2710	F or V
Code 39 (w/ or w/o CD) or MOD43	0-2710	F or V
Codabar (NW7)	0-2710	F or V
Code 128	0-2710	F or V
Code 16K	0-2710	V
Code 93	0-2710	V
MSI	0-14	F or V
PDF 417	0-2710	F or V
Maxicode*	0 to 93 (alphanumeric) 0 to 128 (numeric)	F or V
Data Matrix*	0 to 2335 alphanumeric 0 to 2710 (numeric)	V
Quick Response*	1167-2710 (numeric) 707-2710 (alphanumeric)	V

* For more information about MaxiCode,Data Matrix, and Quick Response, see Appendix A, "Samples."

Left/Center/Right-Justified Fields

Balanced Fields

End-Justified Fields

Remember to include text or numbers that may appear with the bar code for the row measurement.

English	$\mathbf{0}-\mathbf{1 2 0 0}$
Metric	$\mathbf{0}-\mathbf{3 0 4 5}$
Dots	$\mathbf{0 - 2 4 3 6}$

B6. column
Distance from the lower left edge of the print area to the pivot point.

English	$0-189$
Metric	$0-479$
Dots	$0-383$

Allow a minimum of $1 / 10$ inch between the scan edge of bar code and label edges or other data.

Bar code. Options:
1 UPCA
2 UPCE
3 Interleaved 2 of 5
4 Code 39 (no check digit)
5 Codabar
6 EAN8
7 EAN13
8 Code 128
9 MSI
10 UPCA +2
11 UPCA +5
12 UPCE +2
13 UPCE +5
14 EAN8 +2
15 EAN8 +5
16 EAN13 +2
17 EAN13 +5
21 LAC
22 POSTNET
23 Code 93
31 Code 16K
32 PDF417
33 MaxiCode
35 Data Matrix (ECC-200)
36 Quick Response
40 Code 39 (MOD 43 check digit)
41 UPCA \& Price CD
44 EAN13 \& Price CD
50 Interleaved 2 of 5 with Barrier Bar
B8. density Bar code density. Use 0 for Quick Response bar codes. Use the following table for the other bar codes.

Note: If the field contains an 11-digit UPC bar code, the printer automatically zero-suppresses it into a 6-digit UPCE bar code.

Bar code Densities

Bar Code Type	Density Selector	Density (\% or cpi)	Narrow Element (dots/mils)	Narrow to Wide Ratio	Data Length	Appearance Codes Available	Char Set
$\begin{aligned} & \hline \text { UPCA }+2 /+5 \\ & \text { Price CD } \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 76 \% \\ & 114 \% \end{aligned}$	$\begin{aligned} & \hline 2 / 9.9 \\ & 3 / 14.8 \end{aligned}$	N/A	$\begin{aligned} & 11 \text { or } 12 \\ & 14 / 17 \end{aligned}$	1, 5, 6, 7 or 8	0 to 9
$\begin{aligned} & \text { UPCE } \\ & +2 /+5 \end{aligned}$	$\begin{array}{\|l} \hline 2 \\ \hline \end{array}$	$\begin{aligned} & 76 \% \\ & 114 \% \end{aligned}$	$\begin{aligned} & 2 / 9.9 \\ & 3 / 14.8 \end{aligned}$	N/A	$\begin{aligned} & 6 \text { or } 7 \\ & 9 / 12 \end{aligned}$	1, 5, 6, 7 or 8	0 to 9
$\begin{aligned} & \text { EAN8 } \\ & +2 /+5 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 76 \% \\ & 114 \% \end{aligned}$	$\begin{aligned} & 2 / 9.9 \\ & 3 / 14.8 \end{aligned}$	N/A	$\begin{aligned} & 7 \text { or } 8 \\ & 10 / 13 \end{aligned}$	1, 5, 6,7 or 8	0 to 9
$\begin{aligned} & \text { EAN13+2/+5 } \\ & \text { Price CD } \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 4 \end{array}$	$\begin{aligned} & 76 \% \\ & 114 \% \end{aligned}$	$\begin{aligned} & 2 / 9.9 \\ & 3 / 14.8 \end{aligned}$	N/A	$\begin{aligned} & 12 \text { or } 13 \\ & 15 / 18 \end{aligned}$	1, 5, 6,7 or 8	0 to 9
```Interleaved 2 of 5 or I2of5 with Barrier Bar```	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	1.1   2.1   3.2   4.2   5.6   6.3   7.5   8.8 9.6   11.2   11.0   12.7   14.5	$\begin{aligned} & 21 / 103.4 \\ & 12 / 59.1 \\ & 7 / 34.5 \\ & 6 / 29.6 \\ & 4 / 19.7 \\ & 4 / 19.7 \\ & 3 / 14.8 \\ & 3 / 14.8 \\ & 3 / 14.8 \\ & 2 / 9.9 \\ & 2 / 9.9 \\ & 2 / 9.9 \\ & 2 / 9.9 \end{aligned}$	$\begin{aligned} & 1: 3.0 \\ & 1: 2.5 \\ & 1: 3.0 \\ & 1: 2.5 \\ & 1: 3.0 \\ & 1: 2.5 \\ & 1: 3.0 \\ & 1: 2.3 \\ & 1: 2.0 \\ & 1: 3.0 \\ & 1: 3.0 \\ & 1: 2.5 \\ & 1: 2.0 \end{aligned}$	0 to 2710	8	0 to 9
(Code 39 or MOD43 (Extended Code 39)	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 6 \\ & 7 \\ & 11 \\ & 12 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.7 \\ & 3.5 \\ & 4.2 \\ & 6.3 \\ & 7.0 \\ & 3.9 \\ & 12.7 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10 / 49.3 \\ & 8 / 39.4 \\ & 4 / 19.7 \\ & 3 / 14.8 \\ & 2 / 9.9 \\ & 2 / 9.9 \\ & 4 / 19.7 \\ & 1 / 4.9 \\ & 5 / 24.6 \end{aligned}$	$\begin{aligned} & 1: 2.5 \\ & 1: 2.5 \\ & 1: 2.5 \\ & 1: 3.0 \\ & 1: 3.0 \\ & 1: 2.5 \\ & 1: 2.0 \\ & 1: 3.0 \\ & 1: 2.2 \end{aligned}$	0 to 2710	8	SPACE   \$\%*+-./   0 to 9   A to Z
Codabar (NW7)	$\begin{aligned} & \hline 2 \\ & 3 \\ & 4 \\ & 4 \\ & 7 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 3.0 \\ & 4.6 \\ & 5.1 \\ & 8.4 \\ & 9.2 \\ & 10.1 \end{aligned}$	$\begin{aligned} & 8 / 39.4 \\ & 6 / 29.6 \\ & 4 / 19.7 \\ & 4 / 19.7 \\ & 2 / 9.9 \\ & 2 / 9.9 \\ & 2 / 9.9 \end{aligned}$	$\begin{aligned} & 1: 3.0 \\ & 1: 2.5 \\ & 1: 5.5 \\ & 1: 2.0 \\ & 1: 3.0 \\ & 1: 2.5 \\ & 1: 2.0 \end{aligned}$	0 to 26	8	$\begin{aligned} & \$+-. / \\ & 0 \text { to } 9 \\ & \text { a to d } \end{aligned}$
Code 128   or   Code 16K	$\begin{array}{\|l} 4 \\ 6 \\ 8 \\ 20 \end{array}$	$\begin{aligned} & 3.5 / 7.0 \\ & 4.4 / 8.7 \\ & 5.8 / 11.7 \\ & 8.7 / 11.5 \end{aligned}$	$\begin{aligned} & 5 / 24.6 \\ & 4 / 19.7 \\ & 3 / 14.8 \\ & 2 / 9.9 \end{aligned}$	N/A	0 to 2710	8	00H to 7FH

Note: The start (*) and stop (+) characters are automatically added for Code 39. Code 39, density 12, produces a one-dot narrow bar. This density is intended for special U.S.P.S. ACT-tag applications only.

3-12 Defining Fields

Bar Code Type	Density Selector	Density (\% or cpi)	Narrow Element (dots/mils)	Narrow to Wide Ratio	Data Length	Appearance Codes Available	Char Set
CODE 93	$\begin{aligned} & \hline 3 \\ & 4 \\ & 5 \\ & 7 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 3.7 \\ & 4.5 \\ & 5.6 \\ & 7.5 \\ & 11.2 \end{aligned}$	$\begin{aligned} & \hline 6 / 29.6 \\ & 5 / 24.6 \\ & 4 / 19.7 \\ & 3 / 14.8 \\ & 2 / 9.9 \end{aligned}$	N/A	0 to 2710	8	$\begin{aligned} & 00 \mathrm{H} \text { to } \\ & 7 \mathrm{FH} \end{aligned}$
MSI	$\begin{aligned} & 4 \\ & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.6 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 4 / 19.7 \\ & 3 / 14.8 \\ & 2 / 9.9 \end{aligned}$	$\begin{aligned} & 1: 2.0 \\ & 1: 2.0 \\ & 1: 2.5 \end{aligned}$	0 to 14	8	0 to 9
POSTNET	$\begin{aligned} & 0 \text { (fixed at } \\ & 4.3 \mathrm{cpi} \text { ) } \end{aligned}$	24/118.2	10/49.3	$\begin{aligned} & \text { 4/19.7 (5 } \\ & \text { dot gap) } \end{aligned}$	$\begin{aligned} & 0,5,6,9 \text { or } \\ & 11 \end{aligned}$	8	0 to 9
MaxiCode	7	N/A	N/A	N/A	99	8	OOH to FFH


Bar Code   Type	Density   Selector	Element   Width   (dot/mils)	Row Height   (dots/mils)	Aspect   Ratio	Data   Length	Appearance   Codes   Available	Char Set
PDF417	1	$2 / 9.8$	$2 / 9.8$	$1: 1$	0 to 2709	8	$00 H$ to
	2	$2 / 9.8$	$4 / 19.7$	$1: 2$			FFH
	3	29.8	$6 / 29.6$	1.3			
	4	$3 / 14.8$	$3 / 14.8$	$1: 1$			
	5	$3 / 14.8$	$6 / 29.6$	$1: 2$			
	7	$3 / 14.8$	$9 / 44.3$	1.3			
	8	$4 / 19.7$	$4 / 19.7$	$1: 1$			
	9	$4 / 19.7$	$8 / 39.4$	$1: 2$			
		$4 / 19.7$	$12 / 59.1$	$1: 3$			


Bar Code Type	Density   Selector	Data Length
Quick Response	$\mathbf{0}$	Model 1: 0-1167 Numeric;0-707 Alphanumeric;   $0-486(8-b i t) ; 0-299$ (Kanji)   (QR Code) Models 1 and 2   Model 2: $0-2710$ Numeric, Alphanumeric and 8-bit;   $0-1817$ Kanji

Note: Values in bold indicate the default.

Bar Code	$\begin{gathered} \text { Size } \\ \text { Row x Col. } \end{gathered}$	Density   Selector	Max. Data Length Num. X Alphanum.	App Code	$\begin{aligned} & \text { Char } \\ & \text { Set } \end{aligned}$
Data Matrix Square symbols	$\begin{array}{ll} \hline 10 & \times \end{array} 10$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	$\begin{aligned} & 6 \times 3 \\ & 10 \times 6 \\ & 16 \times 10 \\ & 24 \times 16 \\ & 36 \times 25 \\ & 44 \times 31 \\ & 60 \times 43 \\ & 72 \times 52 \\ & 88 \times 64 \\ & 124 \times 91 \\ & 172 \times 127 \\ & 228 \times 169 \\ & 288 \times 214 \\ & 348 \times 259 \\ & 408 \times 304 \\ & 560 \times 418 \\ & 736 \times 550 \\ & 912 \times 682 \\ & 1152 \times 862 \\ & 1392 \times 1042 \\ & 1632 \times 1222 \\ & 2100 \times 1573 \\ & 2608 \times 1954 \\ & 2710 \times 2335 \end{aligned}$	8	OOH to FFH


Bar Code	$\begin{gathered} \text { Size } \\ \text { Row x Col. } \end{gathered}$	Density Selector	Max. Data Length Num. X Alphanum.	App Code	Char Set
Data Matrix Rectangular symbols	$\begin{aligned} & 8 \times 18 \\ & 8 \times 32 \\ & 12 \times 26 \\ & 12 \times 36 \\ & 16 \times 36 \\ & 16 \times 48 \end{aligned}$	$\begin{array}{\|l\|} \hline 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 0 \text { default (ba } \end{array}$	$\begin{array}{ll} \hline 10 \times 6 \\ 20 \times 13 \\ 32 \times 22 \\ 44 \times 31 \\ 64 \times 46 \\ 98 \times 72 \end{array}$   de size automatically	8   determine	OOH to FFH   data)

Note: The printers support printing a Data Matrix symbol with an X-dimension of 13 mils or greater (3 dots @203 dpi). If you use a denser bar code, make sure the bar code scans in your particular application. Our "premium" supplies and increasing the print contrast are recommended for denser bar codes. Depending on your application, additional densities are available.

B9. height

B10. text

B11. alignment

B12. field rot

Bar code height, in 1/100 inches, $1 / 10 \mathrm{~mm}$, or dots. Minimum values:
English 20
Metric 51
Dots 41
POSTNET, PDF417, and MaxiCode bar codes have a fixed height. Always use $\mathbf{0}$ for these bar codes.
Small Data Matrix and QR Codes may not be scannable. The Data Matrix and QR Code's height depends on the number entered for this parameter. For example, if you select 80 , the symbol could be smaller than 0.80 ," but it will not be greater than the amount specified in this parameter. The symbol arranges the data according to rows and columns within the specified height.
For Quick Response bar codes, the value you enter is the symbol's maximum height. Small bar codes may not be scannable.

Appearance of text with bar code. For UPC and EAN only use 0 to 7 . For all others, use 8, except where noted. Options:

0 Default MaxiCode Mode 0 (obsolete) QR Code Model 2
1 No check digit or number system QR Code Model 1
2 MaxiCode Mode 2 (Numeric Postal Code) QR Code Model 2
3 MaxiCode Mode 3 (Alphanumeric Postal Code)
5 Number system at bottom, no check digit
6 Check digit at bottom, no number system
7 Check digit and number system at bottom
8 No text, bar code only
MaxiCode (autodetect modes 0, 2, or 3)
Data Matrix
Choose L, R, C, B or $\mathbf{E}$ to align the bar code data correctly in the field. B centers variable width bar codes, which may not allow pad-character centering (Code 128, Code 39, etc.) E right justifies variable width bar codes. MaxiCode, Data Matrix, and QR Code must use L.

Field rotation. Field rotation rotates the whole field, not just the characters. Rotation is affected by the pivot point, which varies depending on how text is justified. Lower left corner of field is the pivot point. Options:

0 Top of field points to top of supply (Use for Maxicode)
1 Top of field points to left of supply
2 Top of field points to bottom of supply
3 Top of field points to right of supply
Note: Serial bar codes printed at speeds greater than 2.0 IPS may not scan properly.

$$
\text { B, 3, 12, V, 50, 40, 1, 2, 80, 7, L, } 0
$$

Defines a bar code field (field \#3) with 12 characters of variable length starting at row 150 , column 40. A UPCA bar code with a density of 2 and a height of 80 is used. The check digit and number system are shown at the bottom. The bar code is left aligned without any field rotation.

## Defining Constant Text Fields

A constant text field is a set of fixed characters that prints on all labels. Define each constant text field separately. This field is not assigned a field number, but is counted as a field (keep this in mind, as the printer allows a maximum of 200 fields per format). The characters in this field cannot be changed by batch data. Field options do not apply to constant text fields. Mark the pivot point of your field. This will vary, depending on how your field is justified.

Syntax

C1. C
C2. row

C3. column

```
C,row,column,gap,font,hgt mag,
wid mag,color,alignment,char rot,
field rot,"fixed char",sym set |
```

C1. C Constant Text Field.
2. row For monospaced fonts, distance from bottom of print area to the pivot point. For proportionally spaced fonts, distance from bottom of print area to baseline of characters in the field.

English	$\mathbf{0}-\mathbf{1 2 0 0}$
Metric	$\mathbf{0}-\mathbf{3 0 4 5}$
Dots	$\mathbf{0 - 2 4 3 6}$



Distance from the lower left edge of the print area to the pivot point.

English
0-189
Metric
0-479
Dots 0-383


3-16 Defining Fields

Any number other than $\mathbf{0}$ or the default number affects your field width. Default spacing:

Standard	3 dots
Reduced	1 dot
Bold	3 dots
OCRA-like	3 dots
CG Triumvirate ${ }^{T M}$	
Typeface Bold	varies with each letter
CG Triumvirate	Typeface
EFF Swiss Bold	varies with each letter

C6. hgt mag

C7. wid mag

C8. color

Style of font. Options:
1 Standard 6 HR2

2 Reduced 10
3 Bold 11
4 OCRA-like 50 5 HR1

11 CG Triumvirate ${ }^{T M}$ Typeface

HR2
CG Triumvirate ${ }^{\text {TM }}$ Typeface Bold
EFF Swiss Bold (scalable)

Or a valid downloaded font selector number.
Fonts 5 and 6 are for numeric data only.
The CG Triumvirate ${ }^{\text {TM }}$ typefaces support only the ANSI and DOS Code Page 437 and 850 Symbol Sets. The scalable font does not support Code Page 1256 (Arabic). See Appendix C, "Symbol Sets/Code Pages" for more information.

Height magnifier, 1 to 7 times ( $\mathbf{4}$ to $\mathbf{2 5 5}$ points for the scalable font - font 50 or downloaded TrueType fonts). Use a magnifier of 1 with proportionally spaced fonts, because characters lose smoothness at higher magnifications. See Appendix B, "Fonts," for more information about fonts.

Width magnifier, 1 to 7 times ( 4 to 255 points for the scalable font - font 50 or downloaded TrueType fonts). Proportionally spaced fonts do not have a set width. To estimate the size of your field, use the letter "W" for the widest field or an "L" for an average width field. Find your selected font and the desired width in Appendix B, "Fonts."

There are two types of field color overlay attributes:
Transparent The overlay field (text or constant text) does not block out (or "erase") existing fields.
Opaque The overlay field blocks out (or "erases") existing fields.
Options for standard printer fonts:
B Opaque, Normal, Black, Normal
D/R/W Opaque, Normal, White, Normal
O Transparent, Normal, Black, Normal

Options for scalable fonts:

A/N	Opaque, Normal, Black, Bold
B/O	Opaque, Normal, Black, Normal
E/S	Opaque, Italics, Black, Bold
F/T	Opaque, Italics, Black, Normal

Note: Solid black print should not exceed $30 \%$ on a given square inch of the label, or the printhead life may be decreased.

Field placement in the packet is an important consideration when using field color attributes. If a line field is defined before the overlay (text or constant text) field, the line field is blocked out by the overlay field, depending on the overlay field's color attribute. If a line field is defined after the overlay field, the line field is not blocked out by the overlay field, regardless of the overlay field's color attribute.

C9. alignment	Alignment of constant text in the field. Options:
L	Align on left side of field.
C	Center text within field (for monospaced fonts only)
R	Align on right side of field (for monospaced fonts only)
B Align at midpoint of field	

Use L, B, or E for any font.
C10. char rot Character rotation. The field or supply does not rotate, only the characters do. Options:

0 Top of character points to top of field
1 Top of character points to left of field
2 Top of character points to bottom of field
3 Top of character points to right of field
Note: Font 50 and downloaded TrueType fonts do not support character rotation.

C11. field rot Field rotation. Field rotation rotates the whole field, not just the characters. Rotation is affected by the pivot point, which varies depending on how text is justified. Lower left corner of field is the pivot point. Options:
$0 \quad$ Top of overlay points to top of supply
1 Top of overlay points to left of supply
2 Top of overlay points to bottom of supply
3 Top of overlay points to right of supply
C12. "fixed char" Fixed characters to appear in the field. Maximum 2710 characters. Enclose in quotation marks.

3-18 Defining Fields

C13. sym set Symbol set. Use 0 for the Internal Symbol Set.
For scalable fonts, use:
1 ANSI Symbol Set
102 Unicode (user input) for particular mapping
437 DOS Code Page 437 (Domestic)
850 DOS Code Page 850 (International)
852 DOS Code Page 852 (Latin 2)
855 DOS Code Page 855 (Russian)
857 DOS Code Page 857 (IBM Turkish)
860 DOS Code Page 860 (MS-DOS Portuguese)
1250 Code Page 1250 (Latin 2)
1251 Code Page 1251 (Cyrillic)
1252 Code Page 1252 (Latin 1)
1253 Code Page 1253 (Greek)
1254 Code Page 1254 (Turkish)
1255 Code Page 1255 (Hebrew)
1256 Code Page 1256 (Arabic)
1257 Code Page 1257 (Baltic)
1258 Code Page 1258 (Vietnam)
Note: The CG Triumvirate ${ }^{\text {TM }}$ typefaces support only the ANSI and DOS Code Page 437 and 850 Symbol Sets. The scalable font (font 50) does not support Code Page 1256 (Arabic). Code pages 852-860 and 1250-1258 are for downloaded TrueType fonts or the scalable font. Code page 102 requires a downloaded International TrueType font. TrueType fonts are designed to be regionally specific; therefore, all code pages may not be supported in a given font. See Appendix C, "Symbol Sets/ Code Pages" for more information.

Example $\quad \mathrm{C}, 30,10,0,1,1,1, B, L, 0,0, " M A D E$ IN USA", 0 '
Defines a constant text field starting at row 30, column 10. It does not have any additional inter-character gap. The Standard font is used without any additional magnification. The printing is black on white and left justified. No field or character rotation is used. "MADE IN USA" is printed in this field. The internal symbol set is used.

Use lines to form borders and mark out original prices. Define each line separately. This field is not assigned a field number, but is counted as a field (keep this in mind, as the printer allows a maximum of 200 fields per format). You can define any line length and a thickness up to 99 dots, as long as the solid black print does not exceed 30 percent of any given square inch of the label.

## Line Types

You can create horizontal and vertical lines. There are two ways to define lines.

Segments

## Vectors

Syntax L,type, row, column, angle/end row, length/ end col,thickness,"pattern" |

L1. L Line Field.

L2. type

L3. row

L4. column Distance from left edge of the print area to line origin.

English	$0-189$
Metric	$0-479$
Dots	$0-383$



Distance from bottom of print area to the starting point.

English	$\mathbf{0}-\mathbf{1 2 0 0}$
Metric	$\mathbf{0}-\mathbf{3 0 4 5}$
Dots	$\mathbf{0}-\mathbf{2 4 3 6}$



3-20 Defining Fields
L5. angle If Using Segments:

If Using Segments:
Row location of ending point. Measure from bottom of print area. Ranges same as row above. On horizontal lines, this value must match item L3.
If Using Vectors:
Angle of line. Options: 0, 90, 180, or 270.
L6. length/ If Using Segments: end col


Column location of end point. Measure from left edge of print area. Ranges same as column above. On vertical lines, this value must match parameter L4.

If Using Vectors:
Length of the line in selected units.
Ranges for horizontal lines:
$\begin{array}{ll}\text { English } & 0-189 \\ \text { Metric } & 0-479\end{array}$
Dots
0-383
Ranges for vertical lines:
English 0-1200
Metric 0-3045
Dots 0-2436

Using the chart below for reference, write the line thickness
(1 to 99) in box L7. Line thickness fills upward on horizontal lines, or to the right on vertical lines. Measured in dots.

Dots	Thickness
1	
10	
24	
48	
96	

L8. "pattern" Line pattern. Enter "".
Example $\quad \mathrm{L}, \mathrm{S}, 110,30,110,150,10, " \mathrm{l}$
Defines a horizontal line field as a segment starting at row 110, column 30 and ending at row 110, column 150. The line thickness is 10 dots.

## Defining Box Fields

Use boxes to form borders or highlight items of interest. Define each box field separately. This field is not assigned a field number, but is counted as a field (keep this in mind, as the printer allows a maximum of 200 fields per format). You can define any line length and a thickness up to 99 dots, as long as the solid black print does not exceed 30 percent of any given square inch of the label.

Syntax

Q1. Q
Q2. row

Q3. column

Q4. end row

Q5. end col

Q, row, column, end row, end
col, thickness, "pattern" |
Box (Quadrilateral) Field.
Distance from bottom of print area to lower left corner of box.
$\begin{array}{ll}\text { English } & 0-1200 \\ \text { Metric: } & \mathbf{0 - 3 0 4 5} \\ \text { Dots: } & 0-2436\end{array}$
Distance from left edge of print area to lower left corner of box.

English	$0-189$
Metric	$0-479$
Dots	$0-383$



Distance from bottom of print area to upper right corner of box. Ranges same as row.


Distance from left edge of print area to upper right corner of box. Ranges same as column.


Using the chart below for reference, write the desired line thickness (1 to 99) in box Q6. Boxes fill inward, so make sure your boxes do not overwrite other fields. Measured in dots.

Dots	Thickness
1	
10	
24	
48	
96	

Q7. "pattern"
Example

Line pattern. Enter "".

$$
2,40,30,70,150,3,4 "
$$

Defines a box field starting at row 40, column 30. It ends at row 70 , column 150. It has a thickness of 3 dots.

## DEFINING FIELD OPTIONS

This chapter provides a reference for defining

- field options in formats
- check digit packets.

Note: When using multiple options on the printer, options are processed in the order they are received.

## Applying Field Options

Field options further define text and bar code fields. The text, constant text, or bar code field must be previously defined before you can apply any field option to it. Define options immediately after the field to which they apply.

## Combining Field Options

You can use more than one option with most fields. For example, you can use Option 4 to copy data from another field, and then use Option 30 to pad the field. When you use multiple options for the same field, you must place the options in the order you want to apply them to your format.

## Restrictions

Some options cannot be used together. For example, incrementing (Option 60 ) and price field (Option 42) options cannot be applied to the same field. Refer to the following sections addressing individual options for specific combinations to avoid.

Option 4 (copy a field) is the only option that can be repeated for a single field.

Example	$\mathrm{R}, 1,3,1,3,1,1 \mathrm{l}$
Syntax	R,option\#, parameter...parameter i
R1. R	Indicates field option header.
R2. option\#	Option number:
	1 Define fixed characters
	2 Data type restrictions
	4 Copy data from previous field
	30 Pad data to left or right with specified character
	31 Generate check digit
	42 Format as a price field
	50 Define bar code densities
	51 Define security and truncation of PDF417 bar codes
	52 Define width or length of PDF417 bar codes
	60 Define incrementing or decrementing field
	61 Reimage fields

R3. parameter(s) Varies per option. See the following option descriptions.

## Option 1 (Fixed Data)

Fixed data is information (a company name or store number) you want to print on all labels. You can define fixed characters for an entire field or for part of a field.

Syntax R,1,"fixed char"
R1. $R \quad$ Option Header.
R2. 1 Option 1.
R3. fixed char Characters to insert. Enclose in quotation marks. If you are defining fixed characters for part of a field, place underscores(_) in non-fixed positions. Any spaces in the phrase are fixed characters. Range: $\mathbf{0}$ to 2710.

Note: Underscore characters are stripped out and the data is compressed if no data is supplied by the batch and the field length is variable.

Example R,1,"_ _ _\% _ _ _ _"
Uses fixed characters (\% \$) in positions 4 and 5. The other positions are variable.

Example R,1,"MONARCH"
"MONARCH" appears as a fixed field in this example.
To fill in the non-fixed portion of the field, see "Defining Batch Data Fields" in Chapter 6. As an alternative, you can apply Option 4 to copy data into the non-fixed character positions.

## Option 2 (Data Type Restrictions)

This option restricts the data type for a particular field. You can use Option 2 only once per field.

If you do batch entry only in the batch packet, you do not need to apply Options 2 and 3. Use these options only for offline batch entry.
Syntax
R,2,char_code '

R1. $R \quad$ Option Header.
R2. 2
Option 2.
R3. char code
Character type for the field. Options:
1 Numeric only (0..9)
2 Letters only (A..Z,a..z)
3 Symbols only (printable characters other than letters or numbers)
4 Letters and numbers only
5 Numbers and symbols only
6 Letters and symbols only
Spaces are permitted in all categories. You can also use a combination of any two (letter, numbers, or symbols) character types.

Note: A use for this option is a quantity field, where the operator could enter only numeric data.

Example $\mathrm{R}, 2,2$ I
Restricts the field data to letters only (A-Z or a-z).

## Option 4 (Copy Data)

You can create a field that uses data from another field. This is useful for creating merged fields or sub-fields. You can copy the information from multiple fields into one field by applying the copy procedure more than once. Copy data is the only option you can apply to a field more than once.

The maximum number of characters defined in box T3 or B3 must allow for the number of characters you will place in the field, including any price, check digit, or fixed characters inserted by the printer. The maximum number of characters in the field into which data is copied cannot exceed 2710 or the maximum number of characters permitted by the bar code.

Note: When copying from more than one field, copy into the destination field from left to right.

Syntax	R,4,src fld,src start, \# to copy,dest start, copy code \|
R1. R	Field Option Header.
R2. 4	Option 4.
R3. sre fld	Field number from which data is copied. Range: 0 to 999.
R4. src start	Position number in the source field of the first character to be copied Character positions are numbered 1 to 2710, starting from the left.
R5. \# to copy	Number of characters to copy. Range: 1 to 2710.
R6. dest start	Position number where copied characters are to begin printing in the destination field. Range: 1 to 2710.
R7. copy code	Copy Method.   1 Copy field as is (including price symbols, pad characters, check digits, etc.).
	2 Copy unformatted data (without price characters, pad characters, etc.).
Example	$\mathrm{R}, 4,3,1,3,1,1$ i

Copies data from field \#3, starting at the first position and copying three characters. In the destination field, the information is placed in position 1 and copied as formatted data.

## Merging Fields

You can copy data to merge the contents of fields. Use the copy data option as many times as necessary to copy all the appropriate fields into the merged field.

In the following example, two text and two non-printable fields are shown. Data from these fields is merged to form field 5 , and is then printed as a bar code.

Field	Data	Field Type
1	203	Non-printable
2	339	Non-printable
3	8	Text
4	BLUE	Text
5	2033398 BLUE	Bar Code

To create this sequence:

1. Define fields $1,2,3$, and 4.
2. Define field 5 as a bar code. Allow enough characters in the bar code field to hold all the copied characters.
3. Apply Option 4 to field 5 once for every source field.

## Sub-Fields

You can copy a segment of data from one field into a new location, called a sub-field. For example, extract part of the data in a bar code and display it in text form in a sub-field. Then, use the copy data option.

## Option 30 (Pad Data)

You can add characters to one side of a field to "pad" the field. Padding allows you to fill in the remaining spaces when the entered data does not fill an entire field. If a variable length field is not completely filled with batch data, this option fills the remaining positions in the field with the character designated by Option 30.

Syntax
R1. $R \quad$ Option Header.
R2. 30
R3. $L / R$

R4. "character" Pad character must be within the $\mathbf{0}$ to 255 decimal range and enclosed inside quotation marks.

Note: Do not use on fixed length fields.
Example R,30,L,"X" |
Pads data with an " $X$ " on the left side of the field.

## Sample Use for Padding

If you have a variable length bar code that you want to occupy a fixed amount of space on the supply, use pad characters. If the maximum number of characters in the bar code is 15 , but the batch record only has 10 characters, the padding option fills the remainder of the field with pad characters.

## Option 31 (Calculate Check Digit)

The printer generates a check digit if you apply Option 31 to the field. You cannot use this option if the field contains a UPC, EAN, or Code 39 (with the MOD43 check digit) bar code.

Syntax

```
R,31,gen/ver,check digit # ;
```

R1. $R \quad$ Option Header.
R2. 31 Option 31.
R3. gen/ver Enter $\mathbf{G}$ to generate a check digit.
R4. check digit \# Specifies a check digit scheme. Enter a number that identifies a check digit scheme that has been defined. For more information, see "Using Check Digits." Range: 1 to 10.

Example R,31,G,5
Generates a check digit using the previously defined check digit scheme 5.

## Option 42 (Price Field)

You can apply options that will insert monetary symbols automatically. Do not use this option with Option 31 (define a check digit) or Option 60 (increment or decrement a field). This option is not recommended for bar codes. When determining the maximum number of characters, add the maximum number of digits and the monetary symbols.

Syntax
R, 42,appearance code I
R1. $R \quad$ Option Header.
R2. 42 Option 42.
R3. appearance Enter 1 to print price field in standard notation, as defined by country code setting.

Use the monetary formatting packet to select monetary notations and symbols by country setting. See "Defining the Monetary Formatting Packet" for more information.
See Appendix C, "Symbol Sets/Code Pages," to make sure the monetary symbol you want to use is printable in the font selected for this field. For monetary symbols other than the dollar sign, use the internal symbol set.

Example R,42,1
Uses a price field that prints the monetary symbol and notations as defined in the monetary formatting packet.

## Option 50 (Bar Code Density)

You can apply this option to bar code fields when you want to create custom densities. When you apply this option, it overrides the density value in the bar code field. When using this option, set the density parameter in your bar code field to the default value. You can only use this option once for each bar code field.

Bar codes produced using Option 50 may not be scannable. Code 39, density 12, produces a one-dot narrow bar. This density is intended for special U.S.P.S. ACT-tag applications only. Synthetic supplies are recommended to produce scannable bar codes.

The additional character gap, narrow space, and wide space parameters are valid only with Code 39 and Codabar. If these parameters are specified for any other bar codes, they will be ignored by the printer. Do not use Option 50 with fixed density bar codes.

Option 50 can be used with PDF417 bar codes for specific customer ratios. With PDF417 bar codes, use only the narrow and wide parameters. The narrow parameter defines the individual bar width in dots and the wide parameter is used to define the height of each individual stacked bar code. Option 50 can also be used with Option 52 to further customize the dimensions of a PDF417 bar code. Option 52 allows customization of the number of columns or number of rows for the bar code.

Syntax
R1. $R \quad$ Field Option Header.
R2. 50 Option 50.
R3. narrow Dot width of the narrow element. Range: 1 to 99 .
$R 4$. wide Dot width of the wide element. Range: $\mathbf{1}$ to 99 .
R5. gap Additional dot space between characters. Enter a value of $\mathbf{1}$ to 99. (Code 39 and Codabar only.)

R7. wide_space Additional dot width of the wide bar code space. (Code 39 and Codabar only). Range: 1 to 99.

Example $\quad$ R,50,4,8,4,4,8
Creates a custom bar code density with a narrow element of 4 dots, a wide element of 8 dots, a gap of 4 dots, 4 additional dot widths for the narrow bar code space, and 8 additonal dot widths for the wide bar code space (if this is a Code 39 or Codabar bar code).

## Option 51 (PDF417 Security/Truncation)

You can define a security level and choose whether or not to truncate a PDF417 bar code. Higher security levels add data to a bar code, improving scan reliability. Some damaged bar codes may still be scannable if the security level is high enough. You can use this option to create standard PDF417 bar codes or use the truncated option to create a narrower bar code. This option can appear only once per PDF417 field, in any order, following the bar code field.

As the security level is increased, so is the size of your PDF417 bar code. For each level increased, the bar code will double in size.

Syntax
R,51, security, stand/default ।
R1. $R \quad$ Option Header.
R2. $51 \quad$ Indicates Option 51.
R3. security $\quad$ Security level ranges from 0 to 8 ( 0 is the default).
Higher security levels add data to a bar code, improving scan reliability. Some damaged bar codes may still be scannable if the security level is high enough.

R4. stand/def Truncation selector. Valid values:
S (default) a standard PDF417 bar code
T truncated
Example $\quad$ R,51,2,S
Defines a security level of 2 for a standard PDF417 bar code.

4-10 Defining Field Options

## Option 52 (PDF417 Width/Length)

This option defines the image width or length of a PDF417 bar code. If you define a fixed number of columns (width), the bar code expands in length. If you define a fixed number of rows (length), the bar code expands in width.

Column value does not include start/stop or left/right indicator columns.
If this option does not immediately follow the PDF417 bar code field, the default settings are used. You can only use this option once per PDF417 bar code field.

Syntax	R,52, row/column, dimension I
R1. R	Option Header.
R2. 52	Indicates Option 52.
R3. row/column	Indicates if you are defining the number of rows or column   R Row   C Column
	If you specify rows, the bar code expands in columns, or vice versa.
R4. dimension	The number of rows or columns defined for the bar code. The default is 4 . Valid values:   3-90 for rows   1-30 for columns
Example	R,52, C, 10 ;

Defines the column width of 10, which expands the PDF417 bar code length by 10 .

## Option 60 (Incrementing/Decrementing Fields)

You may have an application, such as serial numbers, in which you need a numeric field to increment (increase in value) or decrement (decrease in value) on successive tickets within a single batch. Incrementing or decrementing can be applied to numeric data only. If you have a field that includes letters and digits, apply incrementing or decrementing to only the portion of the field that contains digits. Do not use with Option 42 (price field).

Syntax
R1. $R \quad$ Option Header.
R2. $60 \quad$ Option 60.
R3. I/D Increment or decrement:
I incrementing field
D decrementing field
R4. amount Amount to increase or decrease. Range: 0 to 999.
R5. I pos Leftmost position in inc/dec portion of field. If this value is not entered, the default value 1 is used. Range: $\mathbf{0}$ to $\mathbf{2 7 1 0}$.

R6. rpos Rightmost position in inc/dec portion of field. If this value is not used, the entire field length is used as the default. Range: $\mathbf{0}$ to $\mathbf{2 7 1 0}$.

Example $R, 60, I, 5,1,6$ :
Increments a field by 5 each time the field is printed. The field increments beginning with the first left position and ending with the sixth position.

## Fixing the First Number in the Incrementing Sequence

There are two ways to enter the first number in the incrementing sequence. You can use batch data or use Option 1 to define the first number as a fixed character. The first number in the sequence must contain the same amount of digits as the highest number to be counted. For example, to count the numbers 1 to 999, the first number in the sequence must be entered as 001.

4-12 Defining Field Options

## Option 61 (Re-image Field)

This option redraws (reimages) a constant field when you have a constant field next to a variable field on your label. It can be used on text, constant text, bar code, line, or box fields.

These printers do not redraw an area if the field data does not change. When a field changes, that area is cleared and the new field data is imaged. However, the new field data may require a larger area than the previous field did. In some cases, neighboring fields that do not change (constant fields) may be covered with white space from the changing field's (variable fields) area. Use this option to reimage the constant field, or it may appear broken.

Note: The most common use for this option is with incrementing fields on your label, because they may cover a constant field..

Syntax R, 61 |

R1. $R \quad$ Option Header.
R2. $61 \quad$ Option 61.
Example R,61 :
Reimages the constant field that appears next to a variable field.


Re-Image ON

FROM:
mONARCH MARRING SYSTEMS DAYTON, OH

BOX 5 of 18


Shipper Num: 78981

Re-Image OFF

In the above example, Option 61 was applied to the bar code field to keep the incrementing field (Box \#) from blocking out the bar code field.

## Using Check Digits

Check digits are typically used to ensure that a text or bar code field scans correctly. If you apply Option 31, the printer calculates a check digit. A check digit scheme determines how the printer calculates a check digit. When you define a check digit scheme, you assign a number to identify it. This number is later entered in box R4 when you apply Option 31 to a field. You can use check digits with text or bar code fields. Check digit calculations are performed on numeric data only.

Do not use check digits with price fields. Do not define a check digit scheme for UPC, EAN, Code 39 (with the MOD43 check digit), and Code 93 bar codes, because they have predefined check digits.

$$
\begin{array}{ll}
\text { Syntax } & \text { \{A,selector, action, device, modulus, } \\
& \text { fld_length, D/P,"weights" \} }
\end{array}
$$

## A1. A <br> Check Digit Header.

A2. selector Assign a number from 1 to 10 to this check digit formula.
A3. action The action to perform. Enter $\mathbf{A}$ to add the check digit scheme.
A4. device Format storage device. Use R (Volatile RAM).
A5. modulus $\quad$ Number from 2 to 11. The modulus is used to divide the sum of products or the sum of digits.

A6. fld_length The maximum number of characters the field will contain. Range: 0 to 2710.

A7. D/P Algorithm. The algorithm determines how the check digit is calculated. Options:

D sum of digits
P sum of products
A8. "weights" String of digits used for calculation. A weight string is a group of two or more numbers that is applied to a field. The number of digits in this string should equal the number in fld_length. Enclose in quotation marks.
Range: 0 to 2710.
Example

$$
\left\{A, 1, A, R, 10,5, P, " 65432^{\prime \prime}\right. \text { | \}}
$$

Adds check digit scheme number 1 to the printer's memory. The modulus is 10, the maximum number of characters in the field is 5 . The check digit is calculated by using the Sum of Products and the string of digits used in the calculation is " 65432. ."

4-14 Defining Field Options

Sum of Products Calculation
This is an example of how the printer uses Sum of Products to calculate a check digit for this data:

```
5
```

1. Weights are applied to each digit, starting with the last digit in the weight string. They are applied right to left, beginning at the right-most position of the field. Remember, a weight string must contain at least two different numbers. This example has a weight string of 1,2,3,4:
field:
weight string:

5	2	3	2	4	5	2	1	9


4	1	2	3	4	1	2	3	4

2. Each digit in the field is multiplied by the weight assigned to it:
field:
weight string:
products:

5	2	3	2	4	5	2	1	9
4	1	2	3	4	1	2	3	4
20	2	6	6	16	5	4	3	36

3. Next, the product of each digit is added together. This is the sum of the products.

$$
20+2+6+6+16+5+4+3+36=98
$$

4. Divide the sum of the products by the modulus (10 in this case), only to the whole number. The balance is called the remainder.

$$
\begin{array}{r}
10 \begin{array}{|}
98 \\
\frac{90}{8}
\end{array}
\end{array}
$$

5. Subtract the remainder from the modulus.

The result becomes the check digit. In this case, the check digit is 2 .
$10-8=2$

## Sum of Digits Calculation

This is an example of how the printer uses Sum of Digits to calculate a check digit for this data:

```
5
```

1. Weights are applied to each digit, starting with the last digit in the weight string. They are applied right to left, beginning at the right-most position of the field. Remember, a weight string must contain at least two different numbers. This example has a weight string of 1,2,3,4:
field:
weight string:

5	2	3	2	4	5	2	1	9
4	1	2	3	4	1	2	3	4

2. Each digit in the field is multiplied by the weight assigned to it:
field:
weight string: products:

5	2	3	2	4	5	2	1	9
4	1	2	3	4	1	2	3	4
20	2	6	6	16	5	4	3	36

3. Next, the digits of the products are added together. Two-digit products are treated as two separate digits.
This is the sum of the digits.
$2+0+2+6+6+1+6+5+4+3+3+6=44$
4. Divide the sum of the digits by the modulus (10 in this case), only to the whole number. The balance is called the remainder.

$$
\begin{array}{r}
4 \\
\boxed{44} \\
\frac{40}{4}
\end{array}
$$

5. Subtract the remainder from the modulus.

The result becomes the check digit. In this case, the check digit is 6 .
$10-4=6$

4-16 Defining Field Options

## CREATING GRAPHICS

This chapter provides information on how to

- map out the graphic image using the hexadecimal (hex) or run length method.
- create a graphic packet using a graphic header, bitmap, duplicate, next-bitmap, text, constant text, line, and box fields.
- place a graphic image into a format.

You can use graphic packets to create bitmapped images. To include a graphic packet within your format, your format must contain a graphic field. See "Placing the Graphic in a Format" for more information.

## Overview of Bitmapped Images

A printed image is formed through a series of dots. Each square on the grid below represents a dot on the printhead. The graphic image is created by blackening dots in a specific pattern. You can print varying shades of gray according to the concentration of dots on the image. When the dots are printed together, the end result is a graphic image.


## Determining a Method

You can use one of two methods to map out your graphic image:
Hex Method The dot sequences are segmented into binary numbers and then converted to hex numbers.

A graphic using gray-scaling, several slanted lines, or several vertical lines typically translates more efficiently with hex representation.

Run Length Encoding Method

The dot sequences are segmented into black and white strings within a row. The total count of each white string is converted to a lower-case letter, corresponding to numeric value. The total count of each black string is converted to an uppercase letter, corresponding to numeric value. This method can reduce imaging time for graphics that contain repetitive rows of dots. A graphic with horizontal lines or very few white-to-black borders typically translates more efficiently with run length encoding.

## 5-2 Creating Graphics

The most efficient encoding method depends on how complicated your graphic image is and whether or not imaging time is a concern. You may want to experiment with both encoding methods to get optimal performance.

## Designing Bitmapped Images

Once you determine the encoding method to use, you can begin mapping out your graphic image.

Note: The image that you map must be an upside down mirror image of the final result.


## Special Considerations

Solid black print cannot exceed $30 \%$ of any given square inch of the supply. If the black print exceeds this limit, you may lose data or damage the printhead.

In the first label, the large " M " logo and thick black line exceed the allowed black to white print ratio. In the second label, the large "M" logo does not exceed the black to white print ratio.


## Using the Hex Method

The following steps explain how to derive a hex character string from a bitmapped graphic.

Each square on the grid represents a dot. A black square indicates the dot is ON , and a white square indicates the dot is OFF. A sequence of binary numbers, called a bit pattern or bitmap, determines what dots are on and off. The numbers " 0 " and " 1 " are used for this purpose. The number " 1 " turns a dot on and " 0 " turns a dot off.

All hex numbers must be two digits. For example, write hex 0 as 00 , or hex E as 0 E .

## 1. Assign 1 to every black square and 0 to every white square.


#### Abstract

00000000000000000000000000000000000000000000000000111111111111111111111111110000000000000000000000000000 000000000000000000000000000000000000001111111111100000000000000000000000000011111111110000000000000000000 00000000000000000000000000000011110000000000000000111111111111111111111111110000000000000001111000000000 00000000000000000000000001111100001111111111111111111111111111111111111111111111111111111110000111110000 00000000000000000000000110000011111111111111111111111111111111111111111111111111111111111111111000001100 000000000000000000001100011111111111111111111111111111111111111111111111111111111111111111110 000000000000000000000001111111111111111111111111111110000000000000000000111111111111111111111111111111110 00000000000000000011111111000000000000000000000000000000000000000000000000000011111111110000 00000000000000000000000000001111111000000000000000000001111111111111111111110000000000000000000011111110000000 0000000000000000000000000000000001111111111111111111111111111111111111111111111111111111110000111000000 ( 0000000000000000000000000001111111000000000000000000011111111111111111111000000000000000000011111111000000 0000000000000000000000000000000001111111111111111111111111111111111111111111111111111111110000111000000 00000000000000000000000000000011111111111111000000000000000000000000000000000000011111111111111000000000 00000000000000000000000000011111110000000000000000000111111111111111111100000000000000000001111111000000  00000000000000000000000000000000001111111111111111111111111111111111111111111111111111111111110000111000000  00000000000000000000000000011100000000111111111111111111111111111111111111111111111111111100000000111000000 000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111110000111000000 00000000000000000000000000000011111111111111000000000000000000000000000000000000011111111111111000000000 0000000000000000000000000001111111000000000000000000011111111111111111100000000000000000001111111000000  00000000000000000000000000000000001111111111111111111111111111111111111111111111111111111111110000111000000 0000000000000000000000000000001111111111111110000000000000000000000000000000000000111111111111111000000000 0000011000000000000000000011100000000111111111111111111111111111111111111111111111111100000000111000000 00000001111000000000000000000000001111111111111111111111111111111111111111111111111111111110000111000000 000000001110000000000000000000111111111111110000000000000000000000000000000000000111111111111111000000000 000000001111110000000000000111000000001111111111111111111111111111111111111111111111111111000000011110000000


2. Section off the grid in columns of eight. If any rows are not divisible by 8, add enough 0's to complete a column.

00000000	000	000	00000000	0000	11	11000000	00000000	00000000	00001111	11111000	00000000	00000000
00000000	00000	000	00000000	0011	00000000	00000000	00000000	00000000	00000	000001	11100000	00
00000000	000000	0000	0000001	11000000	00000000	001111	11	11	1111000	00000000	00011110	00000000
00000000	00000000	00000000	01111100	00111111	11111111	11111111	11111111	11111111	11111111	11111111	11100001	11110000
00000000	00000000	0000000	10000011	11111111	11111111	11111111	11111111	11111111	1111111	11111111	11111110	00001100
0000000	00000000	000000	10001	11111111	11111	11111111	11111111	11111111	11111	111	11111111	111110
00000000	00	000	11	11	11111111	11111111	11	1111111	11111111	11111111	1	0
000	00000000	000	11111111	11111111	111111	11111000	00000000	00000000	11111111	11111111	11111111	11
0000000	0000000	00000001	11111111	11111111	11110000	00000000	00000000	00000000	00000000	01111111	11111111	11111100
00000000	0000000	00	01	10	00000000	00000111	11111111	11111111	0000000	00000000	00111111	0
000	00	000	000	10	0000000	00000	111	111	00000	0000000	000	11000000
00000000	00000000	0000000	00011100	00000011	11111111	111111	11111111	11111111	111111	11111110	00000001	110
00000000	00000000	00000000	00000000	00111111	11111111	11111111	11111111	11111111	11111111	11111111	11100001	11000000
00000000	00000000	000000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	0111111	11111110	00000000
00	00000	000000	000111	100000	00000000	000001	1111111	1	0000000	0000000	000	11000000
0000	00000000	00000000	00011100	00000011	11111111	11111111	11111111	11111111	11111111	11111110	00000001	11000000
0000000	00000000	00000000	00000000	00111111	11111111	11111111	11111111	11111111	11111111	11111111	11100001	11000000
0000	0000000	000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	01111111	11111110	
00000000	00	00	0001	11000000	00000000	00000111	11111111	11111111	00000000	0000000	00011111	11000000
	00000000	00000000	00011100	00000011	1111111	11111111	11111111	11111111	1111111	1111111	00000001	11000000
00000000	00000000	00000000	00000000	00111111	11111111	11111111	11111111	11111111	11111111	11111111	11100001	11
000000	0000000	00000000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	0111111	11111110	00000000
0000	0000000	000000	0001111	11000000	00000000	0000011	11111111	1111111	0000000	0000000	00011111	110
	00	00	00011	000000	11111	11	11111111	111	11	1111111	0000000	
00000000	00000000	000000	00000000	00111111	11111111	11111111	11111111	11111111	1111111	1111111	11100001	11000000
00000000	00000000	00000000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	01111111	11111110	00000000
0000	0000000	00	00011111	11000000	00000000	0000011	1111111	1111111	0000000	00000000	00011111	
	0000000	000000	00011100	0000001	1111111	11111111	11111111	1111111	1111111	1111111	00000001	11000000
00000000	00000000	00000000	00000000	00111111	11111111	11111111	11111111	11111111	11111111	1111111	11100001	11
00000000	00000000	00000000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	01111111	11111110	00000000
00000010	00000000	00000000	00011111	11000000	00000000	00000111	11111111	11111111	00000000	00000000	00011111	11000000
00000011	0000000	0000000	00011100	00000011	11111111	11111111	11111111	11111111	1111111	1111111	00000001	11000000
00000001	11100000	00000000	00000000	00111111	11111111	11111111	11111111	11111111	11111111	1111111	11100001	110
00000000	11100000	00000000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	01111111	11111110	00000000
0000000	11111100		00011100	00000011	11111111	11111111	11111111	11111111	11111111	11111110	00000011	
	11111110	00	0	00111111	11	11	11111111	11111111	11111111	11111111	11100011	11000000

3. One row at a time, convert each group of eight binary digits to hex.
starting at position 49 ...
$00111111=3 \mathrm{~F}$
$1111111=\mathrm{FF}$
$11111111=\mathrm{FF}$
$11110000=\mathrm{F} 0$
4. Write the hex values for each row as a continuous string.
row 1, position 49 = 03FFFFFF00000
5. Repeat steps 3 through 4 for each row on the grid.
6. Insert the hex values in syntax format.

## Using the Run Length Encoding Method

The following steps explain how to derive a run length character string from a bitmapped graphic.

Each square on the grid represents a dot. A black square indicates the dot is ON , and a white square indicates the dot is OFF.

Note: The following example shows "1" to indicate when a square is ON, and " 0 " to indicate when a square is OFF. You do not have to convert your dots when using the run length method.

	0000000											
00000000	000	000	000	000000	11	11000000	00000000	00000000	000	11111000	00000000	00
00000000	00000000	000	000	001	000	000000	000000	00000000	00000000	00	11000000	00
00000000	00000000	0000000	00000011	11000000	00000000	001	11	11111	11110000	00000000	00011110	00000000
00000000	00000000	00000000	01111100	00111111	11111111	11111111	11111111	11111111	11111111	11111111	11100001	11110000
00000000	00000000	00000001	10000011	11111111	11111111	11111	111111	11111111	11111111	111	11111110	00001100
000000	00000000	0000000	10001	11111111	11111	1111	11111	11111111	11111111	111	11111111	11111110
00000000	00000	00		1				11	11111111		11111111	
000000	00000000	00000001	111	11111111	11111111	11111000	00000000	00000000	11111111	11111111	11111111	11111110
0000000	00000000	00000001	11111111	11111111	11110000	00000000	00000000	00000000	00000000	01111111	11111111	11111100
000000	00000000	000000	01	10000000	00000000	0000011	11111111	11111111	00000000	00000000	00111111	0
00000000	00000000	00000000	0	11000000	00000000	000001	1111111	1111111	0000000	0000000	000	11000000
0000000	00000000	00000000	000	00000011	11111111	11	11	11111111	11111111	1111111	00000001	110
00000000	00000000	00000000	00000000	00111111	11111111	11111111	11111111	11111111	11111111	11111111	11100001	1100
0000	00000000	00000000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	0111111	1111111	00000000
00000000	00000000	0	00	11000000	0000000	00000	11	111111	0000000	0000000	00	11000000
00000000	00000000	00000000	0001100	00000011	11111111	1111111	1111111	11111111	11111111	1111111	0000000	11000000
00000000	00000000	00000000	00000000	00111111	11111111	11111111	11111111	11111111	11111111	11111111	11100001	11000000
0000000	00000000	00000000	0000001	11111111	11110000	00000000	00000000	00000000	00000000	01111	11111110	00000000
000	00000000	00000000	0001111	11000000	00000000	00000111	11111111	11111111	00000000	0000000	0001111	11000000
00000000	00000000	0000000	0011100	00000011	111	1111	1111111	11111111	1111	111111	0000000	11000000
00000000	00000000	00000000	00000000	00111111	11111111	11111111	11111111	11111111	11111111	11111111	11100001	11
000	00000000	00000000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	01111111	11111110	00000000
	0000000	00000000	000111	11000000	00000000	00000111	1111111	11111111	00000000	00000000	00011111	
	00000000	00000000	00011100	00000011	111111	1111111	1111111	11111111	11111111	1111	0000000	
00000000	00000000	00000000	00000000	00111111	11111111	11111111	11111111	11111111	11111111	11111111	1110000	11000000
00000000	00000000	00000000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	01111111	11111110	00000000
00000000	00000000	00000000	00011111	11000000	00000000	0000011	1111111	11111111	00000000	0000000	00011111	11
	00000000	00000000	00011100	00000011	11111111	1111111	11111111	11111111	11111111	1111111	0000000	
0000000	00000000	00000000	00000000	00111111	11111111	11111111	11111111	11111111	11111111	11111111	11100001	
00000000	00000000	00000000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	01111111	11111110	00000000
0000	00000000	00000000	00011111	11000000	00000000	00000111	11111111	11111111	00000000	00000000	00011111	11000000
	00000000	00000000	00011100	00000011	11111111	11111111	1111111	11111111	11111111	1111111	00000001	1
00000001	11100000	00000000	00000000	00111111	11111111	11111111	11111111	11111111	11111111	11111111	11100001	11000000
00000000	11100000	00000000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	01111111	11111110	00000000
00000000	11111100	00000000	00011100	00000011	11111111	11111111	11111111	11111111	11111111	11111110	00000011	
00000000	11111110	00	00000000	00111111	11111111	11111111	11111111	11111111	11111111	11111111	11100011	11000000

1. Count the number of consecutive OFF or ON dots in a row. Write the number of consecutive dots in sequence for the first row on the grid. Write "ON" or "OFF" after each number to indicate ON or OFF dots.
```
(row 1, position 50) }26\mathrm{ on
(row 2, position 39) }11\mathrm{ on, 26 off, }9\mathrm{ on
(row 3, position 34) }5\mathrm{ on, 45 off, 6 on
```

2. Replace each number you have written with its corresponding code from the Dot to Run Length Encoding Chart provided in Appendix C, "Symbol Sets/Code Pages." Be sure to use CAPITAL letters for black dots and lower-case letters for white dots.
```
26 on (Z)
11 on (K), 26 off (z), 9 on (I)
```

If the number is greater than 26 , write $z$, followed by the letter corresponding to the amount over 26 . For example, to represent 45 off dots, write zs.

```
5 on (E), 45 off (zs), 6 on (F)
```

3. Write the letter codes in sequence, uninterrupted, for each row.
```
(row 1,position 50) Z
(row 2,position 39) KzI
(row 3,position 34) EzsF
(row 4,position 30) DpZoD
```

Note: If the end of the line specifies OFF dots (lower-case letters), the ending lower-case letters can be omitted. For example, uZFu can be written as uZF.
4. Repeat steps 1 through 5 for each row on the grid.
5. Insert the code values in syntax format.

## Determining How to Store the Image

Once you have mapped out your graphic image, determine how you want to store it. You have several options:

- Volatile RAM
- Temporary Storage
- Flash


## Using Volatile RAM

You should use RAM when the graphic image is used by several formats, because you only have to send the graphic image once. This eliminates the need to send the graphic image repeatedly. See "Placing the Graphic in a Format," for more information about using the graphic packet in a format. Graphics smaller than approximately $1 / 2$ inch by $1 / 2$ inch can be stored in printer RAM and referenced by the graphic ID number.

Graphics are stored in the format buffer and remain there until another graphic packet is sent or the printer is turned off.

## Using Temporary Storage

You should use temporary storage when the graphic image is used only in one format or your graphic image is very large. Graphic data in temporary storage is held in the image buffer until the graphic is printed and then it is cleared from memory. Temporary graphics are also cleared from memory when you send a new batch or update batch. You can use the same graphic image multiple times on a format. Send the graphic image to the printer after the format to which it applies.

If a graphic is stored in temporary storage, do not place a graphic field in the format. This causes an error. Instead, position the graphic image by using the row and column locations in the graphic packet header.

Image memory (temporary storage) accepts a graphic packet 1218 rows long with 811 dots per row.

## Using Flash

You can use flash memory when the graphic image is used by several formats, because you only have to send the graphic image once. This eliminates the need to send the graphic image repeatedly. See "Placing the Graphic in a Format," for more information about using the graphic packet in a format. Graphics stored in flash memory are saved when the printer is turned off.

## Creating a Graphic Packet

Your graphic packet can contain

- bitmapped fields (for bitmapped images)
- constant text fields
- lines
- boxes.

Images using hex representation or run length encoding are bitmapped images. See "Designing Bitmapped Images" to design your bitmapped image.

5-8 Creating Graphics

Once you design your graphic image, you are ready to define a graphic packet. This packet generates the graphic image you use in a format.

## Positioning the Graphic Image

This section explains how to position the graphic image within a graphic packet header, a field of a graphic packet, or within a format.

## Within the Graphic Packet Header

When you are using RAM, the row and column parameters in the graphic header are usually $\mathbf{0 , 0}$, because placement is controlled by the graphic field in your format. This is especially true when designing a compliance label overlay.

When you are using temporary storage, these parameters control the placement of the graphic image on the supply.

The area enclosed within the dotted lines represents the graphic image starting at 0,0 (as defined in the graphic header).


If you want a fixed amount of white space around your graphic image, use something other than 0 for row and/or column.
The area enclosed within the dotted lines represents the graphic image starting at 0,0 with a fixed amount of white space $(\mathbf{1 0 , 1 0})$ around the graphic image.


## Within the Field

In a bitmap, constant text, line, or box field, the row and column parameters control where an individual field or bitmapped row begins in relation to the coordinates defined in the graphic header.

The bottom of the triangle in this example represents the first field of the graphic packet starting at 10,0.


504\% 中

## Within a Format

When you define the graphic field within your format, the row and column parameters represent where on the format to place the graphic image.

If you are doing a compliance label, these numbers are usually 0,0 , because your compliance label covers the entire supply. See "Placing the Graphic in a Format," for a sample compliance label.

If you are placing a graphic (a logo, for example) within a certain area on your supply, enter the starting position (bottom left corner) of the graphic image.

This label shows the triangle "logo" beginning (the bottom left corner) at 155,33 as defined in the graphic field.


## Defining the Graphic Header

Every graphic packet must contain a graphic header. This is the first thing you enter. It identifies and provides important measurement and formatting information for the graphic. Bitmap, duplicate, next-bitmap, constant text, line, and box fields follow the graphic header, if they are used.

## Syntax

G1. G Graphic Header.
G2. graphID Unique number from 1 to 999 to identify the graphic image.
G3. action Enter $\mathbf{A}$ to add the graphic to the printer.
G4. device Graphic storage device:
R Volatile RAM
T Temporary storage
Unit of measure. For bitmapped graphics, G (dots) is the only valid option.

5-10 Creating Graphics

Distance between the bottom of the graphic image area and the first bitmap line. This is usually $\mathbf{0}$, unless you want a fixed amount of white space around the graphic image. See "Positioning the Graphic Image," for more information.

English	$\mathbf{0}-\mathbf{1 2 0 0}$
Metric	$\mathbf{0}-\mathbf{3 0 4 5}$
Dot	$\mathbf{0 - 2 4 3 6}$

Distance between the left edge of the graphic image area and the left edge of first bitmap line. This is usually $\mathbf{0}$, unless you want a fixed amount of white space around the graphic image. See "Positioning the Graphic Image," for more information. Use the previous table for values.

English	$0-189$
Metric	$0-479$
Dots	$0-383$

G8. mode Imaging mode. Enter 0.
G9. "name" Graphic name (optional), $\mathbf{0}$ to 8 characters, enclose within quotation marks.
Example $\{G, 99, A, R, G, 0,0,0, " 99 W i r e " ~:$
Adds a graphic image identified by number 99 to volatile RAM. The graphic uses dot measurement. The image will be placed according to the row and column parameters in the graphic field. The imaging mode is 0 and the image is called 99Wire.

This defines one row of dots, starting at a specific row and column within the graphic image. Each unique row of dots requires a bitmap field. A bitmap field can later be repeated by using a duplicate field.

Syntax
B1. B
B2. row

B3. column Distance (in dots) from the graphic image's left edge to the bitmap line.

B4. algorithm
Coding method for bitmap data:
H Hex Representation
R Run Length Encoding
B5. data Character string made up of hex or run length encoding. Do not put spaces or any other character between the numbers. Range: $\mathbf{0}$ to $\mathbf{2 7 1 0}$.

Example

```
B,row,column,algorithm,"data" i
```

Bitmap Field.
Distance (in dots) from the graphic image's bottom margin to the bitmap line.

English	$\mathbf{0}-\mathbf{1 2 0 0}$
Metric	$\mathbf{0}-\mathbf{3 0 4 5}$
Dot	$\mathbf{0 - 2 4 3 6}$

English 0-189
Metric 0-479
Dots 0-383

Defines a bitmapped graphic field. The image begins 39 dots from the bottom and 56 dots from the left edge of the graphic area. Hex representation is used.

5-12 Creating Graphics

## Creating Next-Bitmap Fields

This field uses the previous field's row and column locations. It allows you to use the bitmap or duplicate field data without having to recalculate row and column locations. This field represents one row of dots on the image.

Syntax
N1. N
N2. adjdir Increments or decrements the row count. Inserts the duplicate line after or before the current row.

0 Increments (inserts after)
1 Decrements (inserts before)
For example:
B,50,35,R,"GsSsG" |
N,0,1,R,"DpZoD" |
prints a next-bitmap field on row 51 at column 35.
N3. adjamt Amount of row adjustment in dot rows. Using 0 overwrites the same line. Range: 0 to 999.

N4. algorithm Coding method for bitmap data:
H Hex Representation
R Run Length Encoding
Character string made up of hex or run length encoding. Do not put spaces or any other character between the hex numbers or run length code letters. Range: 0 to 2710.

Example

$$
\begin{aligned}
& \text { B, 39,56,H, "3FFFFFFO" } \\
& \text { N, 0,1, H, "000000E00000" }
\end{aligned}
$$

Defines a next-bitmap graphic field beginning on row 40. The row count increments by 1. Hex representation is used.

## Creating Duplicate Fields

If a line of data is identical to a previous bitmap or next-bitmap field, the duplicate field allows you to repeat the dot sequence without retyping the data. A duplicate field represents one row of dots on the image.

Note: Duplicate fields are useful when you have a graphic with a lot of repetition.

Syntax
D1. D
D2. adjdir Increments or decrements the row count. Inserts the duplicate line after or before the current row.

0 Increments (inserts after)
1 Decrements (inserts before)
For example:
B,50,35,R,"GsSsG" |
D, 0,20,2
inserts row 50 again at row 70 and row 90. Rows 70 and 90 do not have to be defined later.

D3. adjamt Amount of row adjustment in dot rows. Range: 0 to 999. The above example adjusts the duplicate field to image on row 70 and 90 (adding 20 to the current row count).

D4. count Number of times to duplicate the line. Range: 0 to 999.


Defines a duplicate field that is imaged after the bitmap line. This field duplicates the preceding bitmap line twice (at row 118 and 119).

You can use constant text, line, or box fields in a graphic packet to create a compliance label overlay. See Chapter 3, "Defining Fields," for more information about these fields.

5-14 Creating Graphics

## Sample Hex Graphic Packet

\{G, 99, A, R, G, 0, 0, 0, "99WIRE"
B, 39, 48, H, "3FFFFFFO" |
B, 40, 32, H, "01FFC000000FF8"
B, 41, 32, H, " 3 E 00000000000 FCO "
B, 42, 24, H, "03C0003FFFFFF0000F"
B, 43, 24, H, "7C3FFFFFFFFFFFFFE1F0"
B, 44, 16, H, "0183FFFFFFFFFFFFFFFF06"
B, 45, 16, H, "018FFFFFFFFFFFFFFFFFFE" |
B, 46, 16, H, "O1FFFFFFFFFFFFFFFFFFFE"
B, 47, 16, H, "01FFFFFF80001FFFFFFFFE" |
B, 48, 16, H, "01FFFFF0000000007FFFFC" |
B, 49, 24, H, "7F800007FFFF00003FFO"
B, 50, 24, H, "1FC00007FFFF00001FC0" |
D, 0, 4, 4 ।
B, 51, 24, H, "1C03FFFFFFFFFFFE01C0"
D, 0, 4, 4 i
B, 52, 32, H, "3FFFFFFFFFFFFFE1C0" |
D, 0, 4, 4 i
B, 53, 24, H, "03FFF0000000007FFE"
D, 0, 4, 4 |
B, 70, 0, H, "0400001FC00007FFFF00001FC0" |
B, 71, 0, H, "0600001C03FFFFFFFFFFFE01C0" |
B, 72, 0, H, " 030000003 FFFFFFFFFFFFFE1C0"
B, 73, 0, H, " 01000003 FFF 0000000007 FFE " |
B, 74, 8, H, "FCOO1C03FFFFFFFFFFFEOOCO" |
B, 75, 8, H, "FEOOOO3FFFFFFFFFFFFFEOCO" |
B, 76, 8, H, "1FF803FFF0000000007FFE" |
B, 77, 8, H, "OFFFCFFC00000000000001C0" |
B, 78, 16, H, "FFDF000FFFFFFFFF8003C0" |
B, 79, 16, H, "7FFFC00007FFFF00001FC0" |
B, 80, 24, H, "1C03FFFFFFFFFFFE01C0" |
D, 0, 4, 4 i
B, 81, 32, H, "3FFFFFFFFFFFFFE1C0" |
D, 0, 4, 4 i
B, 82, 24, H, "03FFF0000000007FFE" |
D, 0, 4, 3 i
B, 83, 24, H, "1FC00007FFFF00001FC0" |
D, 0, 4, 3 i
B, 98, 24, H, "O3FFFFFFFFFFFFFFFO" |

B, 99, 24, H, "O7FFFFFFFFFFFFFFFC" i
B, 100, 24, H, "1FF9FFFFFFFFFFFFFF"
B, 101, 24, H, "3FFE0007FFFF8000FF80" i
B, 102, 24, H, "391E0027FFFF803FFFCO" |
B, 103,24, H, "1C7FFFFFFFFFFFFFFFCO" i
B, 104,24, H, "1FC1FFFFFFFFFFFF1FC0" i
B, 105, 24, H, "OFFDFFFFFFFFFFE0FF" |
B, 106, 24, H, "FFFFFFFFFFFFFFF8"
B, 107, 32, H, "3FFFFFFFFFFFFFEO"
B, 108, 32, H, "O3FFFFFFFFFFFF"
B, 109, 48, H, "07FFFF80"
D, 0, 1, 2 i
B, 111, 48, H, "FFFFFFFF" |
B, 112, 32, H, "FFFF00000000FFEO"
B, 113, 24, H, "078000FFFFFFFF001F" |
B, 114, 24, H, "78FFFFFFFFFFFFFFE060" |
B, 115, 16, H, "0187FFFFFFFFFFFFFFFC18" |
B, 116, 16, H, "027FFFFFFFFFFFFFFFFFF2"
B, 117, 16, H, "03FFFFFFFFFFFFFFFFFFFC" |
D, 0, 1, 2 i
B, 120, 16, H, "O1FFFFFFFFFFFFFFFFFFF8"
B, 121, 24, H, "FEFFFFFFFFFFFFFFFFEO"
B, 122, 24, H, "O7FFFFFFFFFFFFFFFC" |
B, 123, 32, H, "FFFFFFFFFFFFFFCO" |
B, 124, 32, H, "O1FFFFFFFFFFF8" | \}

## 5-16 Creating Graphics

## Sample Run Length Graphic Packet

```
{G,99,A,R,G,0,0,0,"99WIRE" |
B,39,50,R,"Z" ।
B,40,39,R,"KzI";
B,41,34,R,"EzsF" |
B,42,30,R,"DpZoD" ।
B,43,25,R,"EdZZEdE" ।
B,44,23,R,"BeZZMeB" ।
B,45,23,R, "BcZZW" ।
B,46,23,R,"ZZZA" |
B,47,23,R,"ZDsZE" ।
B,48,24,"TzkU" !
B,49,25,"HtRqJ" ।
B,50,27,"GsSsG" |
D,0,4,4 ।
B,51,27,"ChZWgC" i
D,0,4,4 :
B,52,34,R,"ZZEdC" |
D,0,4,4 i
B,53,30,R,"NzkN" i
D,0,4,4 ।
B,70,5,R,"AuGsSsG" ।
B,71,5,R,"BtChzWgC" ।
B,72,6,R,"DxZZEdC" |
B,73,7,R,"CtNzkN" |
B,74,8,R,"FmChZWhC" |
B,75,8,R,"GsZZEdC" |
B,76,11,R,"JiNzkN" I
B,77,12,R,"NbJzzeC" '
B,78,16,R,"JaElZKmD" !
B,79,17,R,"QsSsG"।
B,80,27,R,"ChZWgC" ।
D,0,4,4 ।
B,81,34,R,"ZZEdC" ।
D,0,4,4 |
B,82,30,R,"NzkN" ।
D,0,4,4 i
B,83,27,R,"GsSsG" ।
D,0,4,4 |
B,98,30,R,"ZZJ" |
B,99,29,R,"ZZM" ।
B,100,27,R,"JbZZE" ;
```

```
B,101,26,R,"MnToI" i
B,102,26,R,"CbHnTiP" i
B,103,27,R,"CcZZC" i
B,104,27,R,"GeZWcG" I
B,105,28,R,"JaZReH" '
B,106,32,R,"ZZI" !
B,107,34,R,"ZZE" ।
B,108,38,R,"ZQ"।
B,109,53,R,"T" |
D,0,1,2 i
B,111,48,R,"ZF" |
B,112,33,R,"PzfK" i
B,113,29,R,"CpZBoE" |
B,114,25,R,"DcZZGfB" |
B,115,23,R,"BdZZMeB" ।
B,116,22,R,"AbZZVbA" ।
B,117,22,R,"ZZZB" ।
D,0,1,2!
B,120,23,R,"ZZZ" !
B,121,25,R,"ZZV" !
B,122,29,R,"ZZM" ।
B,123,32,R,"ZZF" |
B,124,39,R,"ZT" | }
```


## 5-18 Creating Graphics

## Placing the Graphic in a Format

To include a graphic within a format:

1. Design the graphic image as shown in "Designing Bitmapped Images."
2. If you are using RAM, place a graphic field in the format file to reference the graphic. See the following section, "Defining the Graphic Field," for more information.

Note: If you are using temporary storage, you do not need a graphic field in your format to reference the graphic image.
3. Download all the necessary packets (check digit, format, etc.).
4. Send the graphic file to the printer, if you have not already done so. See "Creating a Graphic Packet" for more information.

## Defining the Graphic Field

The graphic field in a format references the graphic image by the graphID in the graphic header. This field is required only if the graphic will be stored in RAM.

Syntax G,graphid,row,col,mode,rotation |
G1. G Graphic Field.
G2. graphID Unique number from 1 to 999 to identify the graphic image.
G3. row Distance between the bottom of the print area on the supply to the bottom of the graphic image. Measured in selected units.

English 0-1200
Metric 0-3045
Dot 0-2436
The row specified in the constant text, bitmap, line, or box field is added to the row value above to determine the actual position in the format.

G4. column Distance between the left edge of the print area on the supply and the left edge of the graphic. Measured in selected units. The column specified in the constant text, bitmap, line, or box field is added to the col value above to determine the actual position in the format.

English	$\mathbf{0 - 1 8 9}$
Metric	$0-479$
Dots	$\mathbf{0 - 3 8 3}$

G6. rotation The orientation of the graphic on the supply. Enter $\mathbf{0}$.
Example $\quad G, 57,0,0,0,0$ i
Defines a graphic field that is identified by the number 57. The image begins at 0,0 . The imaging mode is 0 and there is no rotation.

## Sample Bitmap Graphic Image

The following format shows the graphic packets (hex and run length) in a sample format.

```
{F,2,A,R,E,400,400,"FMT2" i
G,99,227,35,0,0 I
Q,240,15,300,125,10," " i
T,1,5,V,285,137,0,10,2,2,B,L,0,0,0 ।
T,2,5,V,255,137,0,10,2,2,B,L,0,0,0 ।
T, 3,15,V,180,25,0,10,1,2,B,L,0,0,0 ।
T,4,15,V,121,35,0,1,3,1,B,L,0,0,0 i
L,S,94,15,94,235,10,"" ।
B,5,12, F, 50,65,1,2,40,1,L,0 \ }
```


## Sample Batch Packet

```
{B,2,N,1 }
1,"Pat's" |
2,"Parts" :
3,"3/8 inch Wire" |
4,"3.55/8 Pack" ।
5,"345911871209" | }
```



## PRINTING

This chapter describes how to

- define the batch header, batch control, and batch data files
- enter batch data for the Quick Response (QR) bar code.

It also list the various downloading methods.

Batch data is the actual information printed on the supply. Batch data fills in the format's text and bar code fields.

A batch packet contains the following three parts:
batch header identifies the format and how many labels to print.
batch control defines the print job.
batch data (optional)
defines the actual information printed on the label.

A batch header begins the file. It tells which format the batch uses and how many labels to print. To record batch data, make a copy of the worksheet in Appendix D, "Format Design Tools."

```
Syntax
\{B,format\#,N/U,quantity |
```

B1. B Batch Header.
B2. format\# Format number (1 to 999) to use.
B3. N/U Controls how image is generated.
N New (default). Erase image and re-image all fields using online data. Any missing fields will be blank.
U Update last image with one or more fields.
All other fields remain the same as the last queued batch.
B4. quantity Quantity to print (0 to 999). Using 0 pre-images the field to reduce the imaging time for labels. See "Batch Quantity Zero Method" for more information.

Example $\{\mathrm{B}, 1, \mathrm{~N}, 1$ \}
Defines a batch header that uses format \#1 and reimages all fields using the online data. One label is printed with this batch.

## 6-2 Printing

## Defining the Batch Control Field

The batch header must precede this field. The batch control field defines the print job and applies only to the batch that immediately follows.

Syntax
E,feed_mode,batch_sep, print_mult,multi_part |
E1. E
Batch Control Field.
E2. feed_mode Feed Mode. Options:
0 Continuous Feed (default)
1 On-Demand
E3. batch_sep Batch Separator. Use 0 (no separator).
E4. print_mult Number of tags ( 1 to 999 ) with the same image. 0 is the default.
E5. multi_part Number of identical parts on one tag ( $\mathbf{1}$ to $\mathbf{5}$ ). 0 is the default.
Example E,0,1,1
Defines a batch control field. Continuous feed mode is used and no separator prints between batches.

## Defining Batch Data Fields

Batch data fields should be sent in field number order. Use continuation fields for large amounts of data. If you are using $\mathbf{N}$ (New) in the batch header, you must list all fields with your data in sequence. If you are using $\mathbf{U}$, you need to list only those fields and data that changes from the last printed batch.

```
Syntax
```

field\#,"data string" |

```
field#,"data string" |
C,"continuation" |
```

field\# Identifies the text, bar code, or non-printable text field in which to insert the following data. Range: 1 to 999.
"data string" Provides the actual information to appear in fields. Enclose in quotation marks. Length: 0 to 2710 characters.

C
Identifies information to be appended to the data string. This parameter is optional.

Example

```
1,"Size 12" |
 2,"" |
 3,"Blue" |
C,"and this would be appended." '
```

Defines a batch data field. "Size 12" prints in field \#1, a blank line appears in field \#2, "Blue and this would be appended" prints in field \#3.

## Using Special Characters in Batch Data

There are two ways to specify special characters in batch data:

- Place a tilde (~) before each character
- Use a tilde with the decimal ASCII equivalent

For example, you can use "" or $\sim 034$ to print the " character in your batch data; otherwise, the tilde characters are ignored. You can also use $\sim X X X$ where XXX is the decimal equivalent of an unprintable character.

## Sample Batch Data with Special Characters

\{B,1,N,1 \|	Decimal Character	What Prints
1,"123~034456789" \|	$\sim 034$ is "	123"456789
2,"~094983~'126LG4451" \|	$\begin{aligned} & \sim 094 \text { is } \wedge \\ & \sim 126 \text { is } \sim \end{aligned}$	^983 ' LG4451

## Merged or Sub-Fields

If a field is completely filled by data copied from other fields, use quotation marks without spaces between them for the "data string" parameter.

## Incrementing Fields

In incrementing fields, the first number in the sequence must contain the same number of digits as the highest number to be counted. For example, to increment the numbers in a field from 1 to 999, enter the starting number in the batch as 001 .

## 6-4 Printing

## Entering Batch Data for QR Code

Quick Response (QR Code) is a two-dimensional bar code, which is made up of square modules arranged in an overall square pattern. A unique finder pattern is located at three corners of the symbol. Four levels of error correction are available, along with a wide range of symbol sizes.

- Model 1 is the original specification.
- Model 2 is an enhanced form that includes additional features.

The maximum number of characters depends on the type of characters entered for the batch data and differs for the two models of QR Code.

Data Type	Model1	Model2
Numeric data	1167	2710
Alphanumeric data	707	2710
8-Bit data	486	2710
Kanji data	299	1817

QR Code can accommodate Japanese Kana and Kanji characters and has a variety of applications, including marking spark plugs, radiators, printed circuit boards, and test tubes. Refer to the AIM International Symbology Specification for more details about data requirements.

QR Code requires certain parameters at the beginning of all batch data.
Syntax
"error_cor mask\# data_input, char"
error_cor Level of error correction. Some damaged bar codes may still be scannable if the error correction is high enough. Options:

H Ultra high reliability level
Q High reliability level
M Standard level
L High density level
Note: As you increase the error correction level, the maximum number of characters (in the field) decreases.
mask\# Mask number. Undefined. Leave blank or use $\mathbf{0}$.

Type of characters. Options:
A Alphanumeric
B Binary
K Kanji
N Numeric
Note: In binary mode, the number of characters must be represented by the 4-digit number in decimal.

## Example 1,"HM,N0123456789012345" |\}

Defines the following batch data for the QR Code: The error correction level is H , which provides very high reliability. Leave the mask number blank.
The data input mode is Manual. The type of characters are Numeric and the data is 0123456789012345 .

QR Code Packet

```
{F,1,A,R,E,200,200,"QRCODE" |
B,1,200,V,50,50,36,0,100,2,B,0 :
{B,1,N,1 |
1,"HM,NO123456789012345" | }
```



## Structured Append Mode

QR Code offers a mode called structured append (or concatenated) that allows you to collect data from multiple QR Code symbols and use that data elsewhere. For example, the components of a sub-assembly can have individual QR Codes and the QR Code for the entire assembly contains all the data from the individual codes. This mode also requires certain parameters at the beginning of all batch data.

Syntax	"mode_id code\# \#of_div parity, error_cor mask\# data input char"
mode_id	Mode identifier. Use $\mathbf{D}$ to indicate the structured append (or concatenated) mode.
code\#	Code number of the individual symbol in the concatenated set. You must use a two-digit number in decimal.
\#of_div	Total number of symbols in this concatenated set. You must use a two-digit number in decimal.
parity	Parity byte. You must use a two-digit number in hexadecimal. There is no standard parity byte.
error_cor	Level of error correction. Some damaged bar codes may still be scannable if the error correction is high enough. Options:   H Ultra high reliability level   Q High reliability level   M Standard level   L High density level
	Note: As you increase the error correction level, the maximum number of characters (in the field) decreases.
mask\#	Mask number. Undefined. Leave blank or use $\mathbf{0}$.
data_input	Type of data input. Options:   A Automatic   M Manual
char	Type of characters. Options:   A Alphanumeric   B Binary   K Kanji   N Numeric
	Note: In binary mode, the number of characters must be represented by the 4 -digit number in decimal.

Defines the structured append mode (D) for QR Code. This is symbol (02) of a concatenated set containing (05) symbols. The parity byte is E9. The error correction level is $\mathbf{Q}$, which provides a high reliability. Use $\mathbf{0}$ for the mask number. The data input mode is Automatic. The type of characters are binary (B) and there will be six (06) data characters (qrcode).

## Structured Append QR Code Packet

```
{F,2,A,R,E,200,200,"QRCODE2" ।
B,1,200,V,50,50,36,0,100,2,B,0 \ }
{B,2,N,1
1,"D0202E9,Q0A" ।
C,"0123456789ABCD+ âôû~129~064~159~252~224~064" | }
```



## Downloading Methods

You can download the format and batch data using one of three methods: sequential, batch, and batch quantity zero.

## Sequential Method

Using the sequential method, you send all your format and batch data at one time. Use this method when your application does not require operator intervention to input data. All data is sent down at one time, and the printer then images each field. As soon as the last field is imaged, your labels begin to print.

```
Example {Format}
{Batch Packet}
```


## Batch Method

This is similar to the sequential method, but it is used when you want to send multiple batches. All data for the first batch is sent at one time, and the printer then images each field. As soon as the last field for the first batch is imaged, labels begin to print. This process is repeated for each subsequent batch.

## Batch Quantity Zero Method

You may use the batch quantity zero method when your application requires operator intervention to enter data. While the operator is entering data, the previous field is sent with a batch quantity of zero. The printer images the field, but does not print it. After the operator enters the data for the last field, the batch quantity can be specified. The last remaining field is imaged, and the label prints almost immediately.

To use the batch quantity zero method:

1. Send the format and a batch header in one file. The first time you send the batch header, use the parameter $\mathbf{N}$ (new batch), and the parameter 0 for (zero quantity). This ensures the label is properly positioned.

The printer images constant text, line, and box fields, but does not print them.
2. Input data for each field, and send it with a batch header using the parameter $\mathbf{U}$ (batch update) and a quantity of zero. When the printer receives the data, it immediately images the field, but does not print it.

At this time, the printer is imaging all associated fields, including fields that copy from other fields.
3. Repeat step 2 for each field except the last one.
4. For the last field, input data and send a batch header with the quantity of labels you want printed. When the printer receives input for the last field, it immediately prints the labels. See "Reducing Imaging Time" in Chapter 9 for an example using the batch quantity zero method.

The optional entry method is a quick way to modify your format fields, check digit fields and configuration packets.

## Optional Entry Method

This method enables you to reset only the parameters you want to change. Commas act as placeholders for unchanged parameters. The optional entry method reduces file size and increases the speed at which files are sent to the printer.

## STATUS POLLING

This chapter explains how to use status polling.
There are two types of Status Polling:

- Inquiry Request-information about the readiness of the printer.
- Job Request-information about the current (or last received) job downloaded to the printer.


## Inquiry Request (ENQ)

An ENQ character acts as a request for printer status information. You can send an ENQ in front of, in the middle of, or immediately following any packet downloaded to the printer. An ENQ is a command that can be executed as part of a packet or sent on its own (using a communications program). An ENQ is processed immediately. The ENQ character is user defined.

The ENQ character does not appear as a visible character; however, we are representing the ENQ character as .

## Inquiry Response

Printer status is returned to the host in a 3-byte (3-character) sequence. The first byte is the non-printable user-defined ENQ character, which is not visible on the response. The second and third bytes are printer status codes. See the ENQ Reference Tables for the meaning of bytes 2 and 3.

Example: AB
The status codes ( A and B in this case) are ASCII equivalents to the hexadecimal bits that represent the various types of status responses. This response indicates that the printer is online (Character A) and that there is a stock fault (Character B).

Example: ? ?
Indicates that this is the first ENQ response since the printer was turned on. Send another ENQ immediately to receive the printer's status.

Example: @
Indicates the printer is offline.

The following graphics can be used as a quick reference for the Status of Byte \#2 and Byte \#3. Byte \#1 is the non-printable user-defined ENQ character.

## Status Byte \#2



Status Byte \#3


## ENQ Reference Table - Byte \#2

Char	Const. OFF	Const. ON	Comp. Failure	Corr. Error	Online   Data   Error	Busy	Active	Online
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
@	0	1	0	0	0	0	0	0
A	0	1	0	0	0	0	0	1
B	0	1	0	0	0	0	1	0
C	0	1	0	0	0	0	1	1
D	0	1	0	0	0	1	0	0
E	0	1	0	0	0	1	0	1
F	0	1	0	0	0	1	1	0
G	0	1	0	0	0	1	1	1
H	0	1	0	0	1	0	0	0
I	0	1	0	0	1	0	0	1
$J$	0	1	0	0	1	0	1	0
K	0	1	0	0	1	0	1	1
L	0	1	0	0	1	1	0	0
M	0	1	0	0	1	1	0	1
N	0	1	0	0	1	1	1	0
0	0	1	0	0	1	1	1	1
P	0	1	0	1	0	0	0	0
Q	0	1	0	1	0	0	0	1
R	0	1	0	1	0	0	1	0
S	0	1	0	1	0	0	1	1
T	0	1	0	1	0	1	0	0
U	0	1	0	1	0	1	0	1
V	0	1	0	1	0	1	1	0
W	0	1	0	1	0	1	1	1
X	0	1	0	1	1	0	0	0
Y	0	1	0	1	1	0	0	1
Z	0	1	0	1	1	0	1	0
[	0	1	0	1	1	0	1	1
1	0	1	0	1	1	1	0	0
]	0	1	0	1	1	1	0	1
$\wedge$	0	1	0	1	1	1	1	0
-	0	1	0	1	1	1	1	1
,	0	1	1	0	0	0	0	0

Note: A" 1 " indicates the bit is turned on. A " 0 " indicates the bit is off.

ENQ Reference Table - Byte \#2 (continued)

Char	Const. OFF	Const. ON	Comp. Failure	Corr. Error	Online Data Error	Busy	Active	Online
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
a	0	1	1	0	0	0	0	1
b	0	1	1	0	0	0	1	0
c	0	1	1	0	0	0	1	1
d	0	1	1	0	0	1	0	0
e	0	1	1	0	0	1	0	1
f	0	1	1	0	0	1	1	0
g	0	1	1	0	0	1	1	1
h	0	1	1	0	1	0	0	0
i	0	1	1	0	1	0	0	1
j	0	1	1	0	1	0	1	0
k	0	1	1	0	1	0	1	1
1	0	1	1	0	1	1	0	0
m	0	1	1	0	1	1	0	1
n	0	1	1	0	1	1	1	0
0	0	1	1	0	1	1	1	1
p	0	1	1	1	0	0	0	0
q	0	1	1	1	0	0	0	1
r	0	1	1	1	0	0	1	0
s	0	1	1	1	0	0	1	1
t	0	1	1	1	0	1	0	0
u	0	1	1	1	0	1	0	1
$v$	0	1	1	1	0	1	1	0
w	0	1	1	1	0	1	1	1
x	0	1	1	1	1	0	0	0
y	0	1	1	1	1	0	0	1
z	0	1	1	1	1	0	1	0
\{	0	1	1	1	1	0	1	1
1	0	1	1	1	1	1	0	0
\}	0	1	1	1	1	1	0	1
$\sim$	0	1	1	1	1	1	1	0
Dec 127	0	1	1	1	1	1	1	1

Note: A" 1 " indicates the bit is turned on. A " 0 " indicates the bit is off.

## ENQ Reference Table - Byte \#3

Char	Const. OFF	Const. ON	Low Battery	Format Error	Waiting to Dispense Label	Ribbon Fault	Stock Fault	Online Error
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
@	0	1	0	0	0	0	0	0
A	0	1	0	0	0	0	0	1
B	0	1	0	0	0	0	1	0
C	0	1	0	0	0	0	1	1
D	0	1	0	0	0	1	0	0
E	0	1	0	0	0	1	0	1
F	0	1	0	0	0	1	1	0
G	0	1	0	0	0	1	1	1
H	0	1	0	0	1	0	0	0
I	0	1	0	0	1	0	0	1
$J$	0	1	0	0	1	0	1	0
K	0	1	0	0	1	0	1	1
L	0	1	0	0	1	1	0	0
M	0	1	0	1	1	0	0	1
N	0	1	0	0	1	1	1	0
0	0	1	0	0	1	1	1	1
P	0	1	0	1	0	0	0	0
Q	0	1	0	1	0	0	0	1
R	0	1	0	1	0	0	1	0
S	0	1	0	1	0	0	1	1
T	0	1	0	1	0	1	0	0
U	0	1	0	1	0	1	0	1
V	0	1	0	1	0	1	1	0
W	0	1	0	1	0	1	1	1
X	0	1	0	1	1	0	0	0
Y	0	1	0	1	1	0	0	1
Z	0	1	0	1	1	0	1	0
[	0	1	0	1	1	0	1	1
1	0	1	0	1	1	1	0	0
]	0	1	0	1	1	1	0	1
$\wedge$	0	1	0	1	1	1	1	0
-	0	1	0	1	1	1	1	1
	0	1	1	0	0	0	0	0

Note: A " 1 " indicates the bit is turned on. A "0" indicates the bit is off.

ENQ Reference Table - Byte \#3 (continued)

Char	Const. OFF	Const. ON	Low Battery	Format Error	Waiting   to   Dispense   Label	Ribbon Fault	Stock Fault	Online Error
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
a	0	1	1	0	0	0	0	1
b	0	1	1	0	0	0	1	0
c	0	1	1	0	0	0	1	1
d	0	1	1	0	0	1	0	0
e	0	1	1	0	0	1	0	1
f	0	1	1	0	0	1	1	0
g	0	1	1	0	0	1	1	1
h	0	1	1	0	1	0	0	0
i	0	1	1	0	1	0	0	1
j	0	1	1	0	1	0	1	0
k	0	1	1	0	1	0	1	1
I	0	1	1	0	1	1	0	0
m	0	1	1	0	1	1	0	1
n	0	1	1	0	1	1	1	0
-	0	1	1	0	1	1	1	1
p	0	1	1	1	0	0	0	0
q	0	1	1	1	0	0	0	1
r	0	1	1	1	0	0	1	0
s	0	1	1	1	0	0	1	1
t	0	1	1	1	0	1	0	0
u	0	1	1	1	0	1	0	1
$v$	0	1	1	1	0	1	1	0
w	0	1	1	1	0	1	1	1
x	0	1	1	1	1	0	0	0
$y$	0	1	1	1	1	0	0	1
z	0	1	1	1	1	0	1	0
\{	0	1	1	1	1	0	1	1
1	0	1	1	1	1	1	0	0
\}	0	1	1	1	1	1	0	1
$\sim$	0	1	1	1	1	1	1	0
Dec 127	0	1	1	1	1	1	1	1

Note: A" 1 " indicates the bit is turned on. A "0" indicates the bit is off.

## Job Request

A Job Request returns status information about the most recently processed print job. You can send a job request after an ENQ or batch. You can send two levels of Job Requests:

- Numeric Error Codes Only (0, 1, or 2)
- Verbose (3 or 4)

Syntax \{J,\#\}

Field Type	Valid Options	Description
Identifier	J	Job Status Request
request\#	0	Returns ASCII coded strings or
	1	numeric error codes
	2	Returns error number
	3	Returns number of labels printed in batch
	4	

## Example

The job response may not be immediate. If the printer has an error (out of supplies, ribbon problem, etc.), is in pause mode, or has insufficient memory, correct the problem and then resend the job request. If the problem is not corrected, no response is returned. If a formatting error has occurred, the job request will return the status. The printer must first interpret the format and batch data before returning the response.

Note: You may need to press © $_{5}$ before the job response is returned.
To clear an error, press the left (4) button. An ENQ can also clear errors numbered less than 500. Once the error is corrected, a job request can be sent. The printer cannot accept another job request until the error is resolved.

## 7-8 Status Polling

## Job Response

The Job Response varies, depending on the type of request sent to the printer. The following syntax is the response for a Job 0,1 , or 2 request.

Syntax \{J,Status1,Status2,"FMT-1","BCH-2"\}
Status1 These errors stop the print job. Examples include out of stock, supply faults, or data formatting errors. These errors are numbered less than 24 on the "Job Status 0, 1, 2 Response Table," later in this chapter.

Status2
These are errors in the syntax of the MPCL data stream. Printing does not stop, but the information may not print properly. These errors are numbered greater than 24 on the "Job Status 0, 1, 2 Response Table," later in this chapter.

FMT-1/BCH-2 The format or batch number is returned.
Here is an example of a response returned to a $J 0,1$, 2 request:

$$
\text { \{J, 8, 0, "FMT-1", "ВСН-2" \} }
$$

Indicates that a portion of the format extends off the tag in format 1, batch 2. Refer to the "Job Status 0, 1, 2 Response Table" later in this chapter for brief explanations for J, $0,1,2$ requests. In the above example, refer to error 8 for an explanation.

The following syntax is the response for a Job 3 request. You may need to press before the job response is returned.
Syntax
\{J,"Status1 A,B","Status2
A, B, C, D, E", "FMT-1","BCH-2"\}
"Status1 A,B"
Status1 A contains the field number, in the format or batch, where an error was found. If the error is not in the format or batch, a " 0 " is returned.

Status1 B contains an error number, which represents the actual printer error. The error numbers can be found in Chapter 8, "Diagnostics and Errors."

Example $\quad\{J, " 2,612 "$,
2 is the field number where an error was found. 612 is the error number, indicating that data is missing or does not match the format definition for that field.

Note: Error numbers found in Status1 B, always have a value equal to or greater than 500 . These are considered very serious errors.
"Status2 A,B,C,D,E" contains the packet type, field type, field number, parameter, and error number.

Status2
A- Packet Type

Status2
B- Field Type

Status2
C- Field Number
represents the MPCLII packet that the error occurred on. The packet could be Format (F), Batch (B), Check Digit (A), Graphic (G), or Font (W).
represents the MPCLII field that the error occurred on. If the packet has no fields, Status2 A will be replicated. If the error occurs before the field is identified a question mark is sent. Since the batch data is variable, a $\mathbf{D}$ is sent to indicate data.
represents the field number within each packet. The packet header is the first field and each subsequent field is indicated by the field separator.

## Status2 <br> D- Parameter

represents the parameter within the field that the error occurred. The numbering begins after the field identifier.
is the error that coincides with the error numbers presented in Chapter 8, "Diagnostics and Errors."
"FMT-1/BCH-2" The format or batch number is returned.
Note: If more than one error occurred, only the most serious error is acknowledged.

$$
\text { \{J, "", "F, B, 4,6,33", "FMT-1", "BCH-2"\} }
$$

Indicates that an error occurred on a bar code (B) field within a format (F) packet. The bar code field is the fourth (4) field in the packet. The error occurred in the sixth (6) parameter of the field. Error number 33 means the bar code density is invalid.

To clear an error, press the left (4) button. An ENQ can also clear errors numbered less than 500. Once the error is corrected, a job request can be sent. The printer cannot accept another job request until the error is resolved.
The following syntax is the response for a Job 4 request.
Syntax \{J,printed,total,"FMT-1","BCH-2"\}
printed the number of tags or labels already printed in the batch.

## total

"FMT-1/BCH-2" The format or batch number is returned.
Example
the total number of tags or labels to be printed in the current batch.

8 out of $\mathbf{2 5}$ tags or labels have been printed from format number 3.
Use a Job Request 4 when printing in the on-demand mode with a large number of tags or labels from a single batch. A Job Request 4 may not be accurate if tags or labels are printed in continuous mode, because of the response time involved. A Job Request 4 is not useful in single ticket batches (printing 1 of 1 ) or multiple single ticket batches.

Note: A batch has to be printing when you send the job request. You cannot use this job request on batches printing formats with incrementing fields.

## Job Status 0, 1, 2 Response Table (Status 1 Codes)

Number	Meaning
0	No error
1	Stacker fault
2	Supply problem
4	Hot printhead
5	Printhead open
6	Insufficient memory
7	Ribbon problem
8	Field \#\# extends off tag
9	Field \#\# has a bad font/bar code
10	Field \#\# contains invalid data
11	Field \#\# has a graphic missing
12	Invalid communication channel
13	Invalid file type
14	All communication channels are busy
15	Receive overrun error
16	Receive parity error
17	Receive framing error
18	Receive buffer full
19	Label waiting
21	Bad dots (verifier detected a failure)
23	Low battery
24	Memory configuration packet error
19	

Numbers 25 through 50 are not currently in use.

## 7-12 Status Polling

## Job Status 0, 1, 2 Response Table (Status 2 Codes)

Number	Meaning
51	Invalid command
52	Invalid separator value
53	Graphic not found
54	Format for batch not found
55	Quantity/Multiples out-of-range
56	Name descriptor too long
57	Invalid cut value
58	Invalid number-of-parts value
59	Invalid orientation value
60	Invalid thickness value
61	Invalid text field
62	Invalid bar code field
63	Data string too long
64	Invalid data field
65	Row greater than stock length
66	Row greater than format length
67	Column greater than printhead width
68	Column greater than format width
69	Invalid label length
70	Invalid label width
71	Invalid increment/decrement value
72	Identifier out-of-range
73	No field to create format
74	Stop location of a line is out of range
75	Syntax error
80	Can't use offline format for online batch
81	Can't queue graphic batch
82	Can't store online format
83	Can't queue online batch
84	Can't queue online clear command

7-14 Status Polling

## DIAGNOSTICS AND ERRORS

This chapter explains how to

- print test labels
- reset the printer
- call Technical Support.

Before you call Service, print a test label. The label contains information to help diagnose mechanical and setup problems.

This chapter also provides explanations of your printer's errors. The errors are classified by type and are listed in order. If you have trouble loading supplies or performing maintenance, refer to the Operator's Handbook.

Some errors numbered 400-438 and 500-574 are internal software errors. Errors numbered $703-758$ are supply errors. Follow the directions provided with the error description to correct the problem. Errors numbered 900-999 are Hard Printer Failures. If you cannot clear an error, turn off the printer, wait several seconds and then turn on the printer. Call Technical Support if you receive any error message not listed in this chapter.

To clear a data error, press the left (4) button. If a formatting error occurs, the label prints; but data may be missing. Correct the format or batch and resend them to the printer.

1. From the Diagnostics menu, select Printer. You will see:
```
Test Label
Sensors
\ V
```

2. From the Printer menu, select Test Label.

After you select Test Label, you will see:

```
Diag Label
Test Pattern
```

- 

From the Test Label menu, select Diag Label.
v
MONAPCH
MONAPCH
MONAPCH
MONAPCH
MDDEL:M9460 5/H:Version X.X
MDDEL:M9460 5/H:Version X.X
MDDEL:M9460 5/H:Version X.X
MDDEL:M9460 5/H:Version X.X
A,O,O,O,O,D: B,O,O,O,O,D;
A,O,O,O,O,D: B,O,O,O,O,D;
A,O,O,O,O,D: B,O,O,O,O,D;
A,O,O,O,O,D: B,O,O,O,O,D;
C,0,0,0,0,0,01
C,0,0,0,0,0,01
C,0,0,0,0,0,01
C,0,0,0,0,0,01
D,1,0,2!
D,1,0,2!
D,1,0,2!
D,1,0,2!
E,{,M",{,},"--,--,Od/Da;
E,{,M",{,},"--,--,Od/Da;
E,{,M",{,},"--,--,Od/Da;
E,{,M",{,},"--,--,Od/Da;
F,3,1,0,0,11
F,3,1,0,0,11
F,3,1,0,0,11
F,3,1,0,0,11
G,0,65,65;
G,0,65,65;
G,0,65,65;
G,0,65,65;
M,D,R,640: M,F,R,160:
M,D,R,640: M,F,R,160:
M,D,R,640: M,F,R,160:
M,D,R,640: M,F,R,160:
M,D,R,640; M,F,R,160;
M,D,R,640; M,F,R,160;
M,D,R,640; M,F,R,160;
M,D,R,640; M,F,R,160;
M, T,R,10, M, V,R,640;
M, T,R,10, M, V,R,640;
M, T,R,10, M, V,R,640;
M, T,R,10, M, V,R,640;

MロNARCH   MDDEL:M9460 5/W:Version X.X	
TOTAL INCHES:	0000119
HI ENERGY INCHES:	0000000
VOLTAGE:	07.44
CONTRAST POT:	N/A
PH RESISTANCE:	(0384) 0339
BAD DOTS:	000
MEMORY:	512KR/1024KN
OPTIONS:	--
SWID:	120660

Two test labels print and you return to the Test Label menu. The diagnostic labels show the printer's configuration, as well as the model number and software version number. With version 2.8 or greater software, the printer supports symbol set 102 (Unicode character mapping).

Note: See the System Administrator's Guide to learn how to print two other types of diagnostics labels: the test pattern and the grey scale.

## 8-2 Diagnostics and Errors

## Reading a Test Label

The first test label shows the model number, software version, and the printer's configuration by packet. See Chapter 2, "Configuring the Printer" for more information about the printer's configuration.

The second test label shows the model number, software version, total number of inches printed, voltage, print contrast, printhead resistance, number of bad dots, and memory. In the example above:

- The printer has printed 119 inches of regular supplies.
- The printer has printed no linerless (high-energy) supplies.
- No options are set
- CONTRAST POT does not apply.


## Resetting Printers

Sometimes the printer receives mixed signals and loses its ability to communicate. If this happens, reset the printer and attempt communication again. To reset the printer, turn off the printer, wait 15 seconds, and turn it back on.

When you turn off the printer, all the information set through the online configuration packets ( $A-M$ ) is saved. See the sections in Chapter 2, "Configuring the Printer," for more information about each packet.

## If You Receive an Error Message

Any time you receive a message that is not described in this manual, or the recommended action does not solve the problem, call Technical Support. Some errors are the result of communication problems. In this case, reset your printer and reboot your computer. If you change any of the online configuration packets, resend the format packet to the printer, so the configuration changes take effect.

## If the PC and Printer Are Not Communicating

If your PC is having trouble communicating with your printer, follow these steps:

- Check any messages that occur at the printer and at the computer. See the following error message listing in this chapter for more information.
- Make sure you are using the correct printer cable.
- Make sure the cable is plugged into the correct port on the computer.
- Compare your printer's communications settings (especially flow control) with the settings on your PC. Your printer and PC communications should match. Print a test label to identify the printer's communication settings.
- Make sure the printer is online (ready to receive data).

If all of the above are correct, reset your printer. Try the function again. If you still can not establish communications, call Technical Support.

## Calling Technical Support

Technical support representatives are available Monday through Friday during regular business hours. Follow these steps before you call:

1. Make sure your PC and printer are properly connected.
2. Record any error messages that occurred.
3. Recreate the problem, if you can.
4. Check your port settings. Your problem may be corrected simply by changing the communication settings.
5. List any changes that have recently been made to the system. Try to record what you were doing when the problem occurred.
6. Reset your printer. For information on resetting your printer, see "Resetting Printers."
7. Reboot your computer. Refer to your computer documentation for specific instructions.
8. Print a test label, see "Printing a Test Label" for more information.

## 8-4 Diagnostics and Errors

Have the following information ready before you call: computer brand name and model, version of DOS, printer model, other peripheral devices on your system, support agreement, contract number, or invoice information, customer number, and printer serial number.

## Additional Diagnostics Information

For detailed printer diagnostics information, refer to the Operator's Handbook. See Chapter 7, "Status Polling," for information on requesting printer and job status. See the following error message listing in this chapter for more information.

## Data Errors

Errors 001 to 499 are data errors. These errors are returned in response to a J,3 request. See Chapter 7, "Status Polling," for more information. A data error indicates that incorrect data was received from the host, causing the printer to ignore the entire print job. After checking the packet and correcting the problem, transmit the print job again.

The following is a list of data errors. These errors occur because data in the format, batch, check digit, font, or graphic packet is invalid.

## Format Errors

## Error Description <br> Code

001 Packet ID number must be 1 to 99 .
002 Name must be 1 to 8 characters (excluding non-printable control characters) inside quotes.

003 Action must be A (add) or C (clear).
004 Supply length is invalid. See "Defining the Format Header" in Chapter 3 for valid lengths.

005 Supply width is invalid. See "Defining the Format Header" in Chapter 3 for valid widths.

006 Storage device must be $\mathbf{F}$ (Flash), R (volatile RAM), or $\mathbf{T}$ (temporary for graphics).

007 Unit of measure must be E (English), M (Metric), or G (Dots). See "Defining the Format Header" in Chapter 3 for more information.

010 Field ID number is outside the range 0 to 999.
011 Field length exceeds 2710.
012 Row field position is greater than the maximum stock dimension. See "Defining Text Fields" in Chapter 3 for valid row lengths.

013 Column field position is greater than the maximum stock dimension. See "Defining Text Fields" in Chapter 3 for valid column widths.

014 Font style must be 1, 2, 3, 4, 5, 6, 10, 11, or 50. See "Defining Text Fields" in Chapter 3 or Appendix B, "Fonts," for more information.

015 Character rotation must be 0 (0 degree), 1 ( 90 degree), 2 ( 180 degree), or 3 ( 270 degree). See "Defining Text Fields" in Chapter 3 for more information.

016 Field rotation must be 0 ( 0 degree), 1 ( 90 degree), 2 (180 degree), or 3 (270 degree). See "Defining Text Fields" in Chapter 3 for more information.

017 Field restriction must be V (variable) or $\mathbf{F}$ (fixed).
018 Code page/symbol set selection defined in the field must be 0 (Internal), 1 (ANSI), 102 (Unicode), 437 (DOS Page 437), 850 (DOS Page 850), 852 (Latin 2), 855 (Russian), 857 (Turkish), 860 (Portuguese), 1250 (Latin 2), 1251 (Cyrillic), 1252 (Latin 1), 1253 (Greek), 1254 (Turkish), 1255 (Hebrew), 1256 (Arabic), 1257 (Baltic), or 1258 (Vietnamese). See "Defining Text Fields" in Chapter 3 for more information.

020 Vertical magnification must be 1 to 7 or 4 to 255 (point size) for the scalable or downloaded TrueType fonts.

021 Horizontal magnification must be 1 to 7 or 4 to 255 (point size) for the scalable or downloaded TrueType fonts.

045 Line length is defined beyond the maximum length. See "Defining Line Fields" in Chapter 3 for valid lengths.

046 Line type must be $\mathbf{S}$ (segment) or $\mathbf{V}$ (vector).

Imaging mode in the graphic header must be $\mathbf{0}$.

## Batch Errors

## Error Description Code

101 The format referenced by batch is not in memory.
102 Print quantity is outside the range 0 to 24.
104 Batch mode must be $\mathbf{N}$ (new) or U (update).
105 Batch separator in a batch control field must be 0 (Off).
106 Print multiple is outside the range 1 to 24.
107 Cut multiple is outside the range $\mathbf{0}$ to 999 . Only valid for printers with a knife.

108 Multiple part supply is outside the range 1 to 5 .
109 Cut type is outside the range 0 to 5 . Only valid for printers with a knife.

## Option Errors

## Error Description Code

200 Option number must be 1, 2, 4, 30, 31, 42, 50, 51, 52, 60, or 61.
201 Copy length is outside the range 0 to 2710.
202 Copy start position must be 1 to 2710.
203 Destination start position must be 1 to 2710.
204 Source field must be 0 to 999 .
205 Copy type must be 1 (copy after rules) or 2 (copy before rules).

8-8 Diagnostics and Errors

Increment/Decrement selection must be I (increment) or D (decrement).

Incrementing start position must be $\mathbf{0}$ to 2710.
Incrementing end position must be 0 to 2710 .
The incrementing amount must be 0 to 999 .
Security value for a PDF-417 bar code must be 0 to 8. Correct the value and resend the format to the printer.

Narrow element value is less than 1 or greater than 99 . Correct the value and resend the format to the printer.

Wide element value is less than 1 or greater than 99 . Correct the value and resend the format to the printer.

Dimension must be 1 to $\mathbf{3 0}$ for a column or $\mathbf{3}$ to 90 for a row on a PDF417 bar code.

Truncation code must be S (standard) or T (truncated bar code).
Aspect code must be (columns) or $\mathbf{R}$ (rows).
Option definition must be $\mathbf{S}$ (set) or $\mathbf{T}$ (template).
Input device device must be D (Default), H (Host), K (Keyboard), $\mathbf{N}$ (None), or S (Scanner).

Pad direction must be $\mathbf{L}$ (from left) or $\mathbf{R}$ (from right).
Pad character is outside the range 0 to 255.
Check digit selection must be $\mathbf{G}$ to generate check digit.
Primary or secondary price format is outside the range 1 to 16.
Data type restriction is outside the range of 1 to 6 .
Option is not valid for the field.

Bar code intercharacter gap must be 0 to 99 dots. (This is also known as the additional character gap when using Option 50, Defining Bar Code Densities.)

## Online Configuration Errors

## Error Description Code

251 Power up mode must be 0 (online).
252 Language selection must be 0 (English), 1 (French), 2 (German), or 3 (Spanish-ES).

253 Batch separator must be 0 (off).
254 Slash zero selection must be 0 (standard zero) or 1 (slashed zero).

255 Supply type must be 0 (black mark), 1 (die cut), or 2 (non-indexed).

256 Printhead energy selection must be 0 (standard supplies), 1 (fax paper) or 2 (linerless/synthetic supplies).

257 Feed mode must be $\mathbf{0}$ (continuous) or $\mathbf{1}$ (on-demand, if the option is used).

258 Supply position must be -99 to 99 dots.
259 Contrast adjustment must be -28 to $\mathbf{4 0}$ dots.
260 Print adjustment (position) must be -99 to 99 dots.
261 Margin adjustment (position) must be -99 to 99 dots.
262
263
Speed adjustment must be 0 (default), 20 (2.0 ips), or 30 (3.0 ips).
Primary monetary symbol must be 0 (None), 1 (Dollar), 2 (Pound), 3 (Yen), 4 (Deutsche Mark), 5 (Franc), 6 (Peseta), 7 (Lira), 8 (Krona), 9 (Markka), 10 (Schilling), 11 (Rupee), 12 (Ruble), 13 (Won), 14 (Baht), 15 (Yuan), or 16 (Eurodollar).

8-10 Diagnostics and Errors
$264 \quad$ Secondary symbol selection must be $\mathbf{0}$ (none) or $\mathbf{1}$ (print
265 Monetary decimal places must be 0 to 3 .
266 Character string length in the control characters packet must be 5 (MPCL control characters) or 7 (ENQ/IMD command character).

269 Stop bits selection must be $\mathbf{0}$ (1 bit), or 1 (2 bits). Resend the communication settings packet.

270 Parity selection must be $\mathbf{0}$ (none), 1 (odd), or 2 (even). Resend the communication settings packet.

271 Flow control selection must be 0 (none), 1 (DTR), 2 (CTS/RTS), or 3 (XON/XOFF). Resend the communication settings packet.

283 ENQ Trailer string is too long. Use a maximum of 3 characters.
284 The buffer type must be D (Downloadable Fonts), F (Format), I (Image), R (Receive), T (Transmit), or V (Scalable Fonts).

285 The storage device type in the memory configuration packet must be $\mathbf{F}$ (flash) or $\mathbf{R}$ (volatile RAM).

The buffer size is invalid.

287 The printhead width must be 0.
290 Action must be $\mathbf{0}$ (disable) or 1 (enable) for the backfeed control packet or the printer is active.

291 Dispense position must be 0, $\mathbf{1 0}$ to $\mathbf{2 0 0}$ dots, or the printer is active.

292 Backfeed distance must be 0, $\mathbf{1 0}$ to $\mathbf{2 0 0}$ dots, or the printer is active. The backfeed distance can not be greater than the dispense position.

## Check Digit Errors

## Error Description <br> Code

$310 \quad$ Check digit scheme number must be 1 to 10.
311 Modulus must be 2 to11.
314 Check digit algorithm must be $\mathbf{D}$ (sum of digits) or $\mathbf{P}$ (sum of products).

## Graphic Errors

## Error Description <br> Code

325 Duplicating direction must be $\mathbf{0}$ (insert after) or 1 (insert before) in duplicate fields for graphics.

327 Amount of row adjustment must be 0 to 999 dots in duplicate fields for graphics.

328 Duplicate count must be 0 to 999.
340 Bitmap line encoding must be $\mathbf{H}$ (hex) or $\mathbf{R}$ (run length).
350 Font selector must be 1 to 9999.
351 Font data length must be 68 to 16384.

8-12 Diagnostics and Errors

352

400 The character immediately following \{ is invalid.
402 Field separator is not in the expected location.
403 Field separator was not found.
404 The number (greater than five digits/732,000), string (greater than 2710), or tilde sequence (greater than 255) currently being processed is out of range.

405 Too many fields exist in the format. You cannot have more than 200 fields in the format. Lines, boxes, and constant text fields count as fields.

406 Parser error. Format or graphic is already in use. Make sure your packet not missing i or $\}$ characters.

## Communication Errors

## Error Description Code

409 The printer memory is full. Delete unnecessary formats or graphics from memory. If you are using a graphic file that is very large, consider using another mapping method (such as run length encoding) to reduce the required memory.

410 Parity on the printer does not match the parity on the host. Check the parity setting under SETUP options.

Framing error. The printer cannot communicate with the host. Make sure the host is turned on, communication cables are connected correctly, port settings are correct, and communications are active. Check the baud rate, word length, and stop bits to make sure they match those at the host. Do not toggle between Microsoft® Windows® and MS-DOS while using the COPY command, or you will receive a framing error. Exit Windows before using the COPY command. Re-transmit the data.

412 There is a problem with flow control between the printer and the host. Make sure the printer and the host flow control settings match (both are DTR or both are XON/XOFF). If the error persists, call Technical Support.

413 Online receive buffer is full. Check your printer's XON/XOFF or DTR SETUP values to be sure there is not a flow control problem.

414 The internal keyboard buffer is full or you need a new keypad. Call Technical Support.

415 The buffer size you defined exceeds the total available in your machine.

Internal software list error. Call Technical Support.
Internal software list error. Call Technical Support.
Duplicate internal name. Call Technical Support.
Internal software error. Call Technical Support.
Internal software list error. Call Technical Support.
Internal software list error. Call Technical Support.
Internal software list error. Call Technical Support.
Format name is invalid. Valid name is 1 to 8 characters inside quotes or "" for a printer-assigned name. Press the left (4) button and try to continue. If the error reappears, call Technical Support.

8-14 Diagnostics and Errors

Batch name is invalid or graphic not found. Press the left (4) button and try to continue. If the error reappears, call Technical Support.

429 A field number appears more than once in a format.
433 The batch references a field number that does not exist in the format.

497 An error occurred during the loop back test on the parallel port. Call Service. Only valid for printers with a parallel port.

An error occurred during the loop back test on the serial port. Call Service.

## Data Formatting Failures

Formatting errors indicate that a field will print incorrectly. After you have checked the data stream and corrected the data, retransmit the format and batch.

Note: For errors 571-622, the batch still prints, but the field, font, bar code, or density may be incomplete, missing or contain incorrect data.

## Error Description Code

571 UPC or EAN bar code data length is invalid. The bar code data length in the batch does not fit the format.

572 A copy field, padded field, or incrementing field length is invalid. The field length in the batch does not fit the format or the field contains blanks. Or, the fixed length field does not contain the specified number of characters.

573 Price field length is invalid. The price field length in the batch does not fit the format or the field contains blanks.

574 No CD scheme or room for CD. The CD scheme in the batch does not fit the format or the field contains blanks.

612 The data in this line of the batch is either missing or does not match the format.
The graphic included in your format could not be found. Resend the graphic packet. If the error persists, call Technical Support.

The printer could not image the batch, because the batch was refused. Call Technical Support.

An error occurred while the batch was imaging. Resend the format, batch, font, and/or any graphic packets. If the error persists, call Technical Support.

The batch was not found while imaging. Resend the batch packet. If the error persists, call Technical Support.

Font, bar code or density is invalid. The font, bar code or density in the batch does not fit the format.

Reference point off tag.
Portion of field off tag. There may be an invalid character in the packet. Make sure you did not enter $\mathbf{O}$ for $\varnothing$.

Bar code width is greater than 16 inches or the number of keywords for your PDF 417 bar code exceeds 928 . Decrease the density or shorten the amount of data to print the bar code.

An error occurred opening the TrueType font file. Select a Font and printhead dot density mismatch. A 300 dpi font is
specified in the format, but a 203 dpi printhead is used in the
printer or vice-versa. Check the font or change the printhead to
correct the error. Only valid for printers with a 300 dpi printhead. Font and printhead dot density mismatch. A 300 dpi font is
specified in the format, but a 203 dpi printhead is used in the
printer or vice-versa. Check the font or change the printhead to
correct the error. Only valid for printers with a 300 dpi printhead. Font and printhead dot density mismatch. A 300 dpi font is
specified in the format, but a 203 dpi printhead is used in the
printer or vice-versa. Check the font or change the printhead to
correct the error. Only valid for printers with a 300 dpi printhead. Font and printhead dot density mismatch. A 300 dpi font is
specified in the format, but a 203 dpi printhead is used in the
printer or vice-versa. Check the font or change the printhead to
correct the error. Only valid for printers with a 300 dpi printhead.
A bad dot falls on a bar code and the dot cannot be shifted. A gray box is printed instead of the bar code.

Magnification must be $\mathbf{1}$ to $\mathbf{7}$ or $\mathbf{4}$ to 255 (point size) for the scalable font.

The JIS (16-bit) code for Kanji is invalid.

8-16 Diagnostics and Errors different font to download. If the error message persists, call
An error occurred
different font to dow
Technical Support.

$$
0
$$

Not enough memory to create the downloaded TrueType characters in the scalable (vector) fonts buffer. Reconfigure the printer's memory and increase the scalable (vector) fonts buffer. Resend the font, format, and batch packet after reconfiguring the memory. If the error message persists, call Technical Support.

## Machine Faults

These errors occur when there is a problem with the printer.

## Error Description

Code
703 The printer sensed a calibration of different-sized black marks. Make sure the correct supply is loaded.

704 Printer has not sensed a supply mark within the specified number of inches or out of supplies.
Check the

- supply tracking
- supply marks
- black mark sensor position
- supply roll for binding.

Press the left (4) button. If the error continues to appear, change the supply.

710 Band out of data. Call Technical Support.
711 UART receiving communication error (framing, parity, etc.). Call Technical Support.

712 Receiving failure or command overrun error. Call Technical Support.

713 Receiving failure or illegal command. Call Technical Support.
714 Receiving failure or undefined command. Call Technical Support.

A memory allocation error occurred during initialization.
Printhead is overheated. Turn off the printer to let the printhead cool. If the error persists, call Technical Support.

Printer did not sense a black mark when expected. The supply may be jammed. For errors 751-753, check the

- supply tracking
- supply marks
- black mark sensor position
- supply roll for binding.

Press the left (4) button and try to continue printing. If the error continues to appear, change the supply

Printer sensed a mark in the wrong place.
Printer sensed a mark that is too long.
Printer has a ribbon problem. Check the ribbon for a jam or remove any slack by turning the take-up reel clockwise. Load a new ribbon.

Printhead is open. Close the printhead before continuing. If the error persists, call Technical Support.

The printer is out of supplies. Load supplies.
Load supplies. The calibrated supply length differs by plus or minus .25 inches from the format. Press (i) to print on the current supply or load new supply and press (4).

Check supply. Either the supply is not seen, or the on-demand sensor is broken (purchase optional). Check for a label jam. Clear the supply path or reload supplies. This error may occur if you remove a label too quickly in on-demand mode. The printer does not recalibrate after this error.

Low battery. Recharge the battery.
Waiting to dispense label. Press (7).

8-18 Diagnostics and Errors

Backfeed error. There is a problem with the backfeed or overfeed distance.

Incorrect AD value. Call Technical Support.
Printhead has more than 10 bad dots within the format area or is not connected. Make sure the printhead is connected.

The printhead is not receiving enough volts. Call Technical Support.

The print motor is not ready. Call Technical Support.
The format specified by the application was not found. Reload your application and format, and try again. If the problem continues, call Technical Support.

The voltage is too low. Call Technical Support.
The voltage is too high. Call Technical Support.
The printer is busy. Wait until the printer is idle (no batch waiting to print or not receiving data) before you send any packets. This error may occur when you try to print a test label if the printer is busy. Turn off the printer. Wait two seconds and turn it back on. Resend the packets. If the problem continues, call Technical Support.

The printer has an error pending. Turn off the printer. Wait 15 seconds and turn it back on. Resend the packets. If the problem continues, call Technical Support.

The printer is not initialized. Call Technical Support.
The printer job queue is full. Turn off the printer. Wait 15 seconds and turn it back on. Resend the packets. If the problem continues, call Technical Support.

The backfeed mode is not set.
Print engine lock-up. Call Technical Support.

These errors occur when there a problem occurs with the printer's flash memory.

## Error Description <br> Code

800 A directory in flash memory is full.
801 Flash memory is full.
802 A directory in flash memory cannot be found.
803 There is no directory in flash memory.
810 A file in flash memory is not open.
811 A file in flash memory is already open.
812 The file in flash memory is full.
813 You cannot access flash memory.
820 An error occurred in the flash program.
821 An error occurred while erasing flash memory.
822 There is a flash ID error.

## Hard Printer Failure Errors

These errors are hard printer failures. Call Technical Support if you receive these messages.

## Error Description <br> Code

900 RAM test failure.
901 ROM/EPROM checksum failure.
902 Software timer failure.
903 Software interrupt failure.
904 No memory for native layer.
905 Illegal interrupt.
906 Non-maskable interrupt. Check format packet for font clear or format clear packets.

907 Low RAM error.
908 Non Volatile RAM checksum failure.
909 RAM corrupted.
910 Warm restart.
SYSTEM ERROR \#\# can be:VECTOR \#\# 2 Bus Error3 Address Error
4 Illegal Instruction
5 Zero Division
6 CHK, CHK2 Instructions
7 TRAP Instructions
8 Privilege Violation
9 Trace
10 Line 1010 Emulator
48 User-defined vectors (48-255)This error is fatal. If you receive it, reset and/or reflash theprinter. If the error persists, call Technical Support. If you needto return the printer, use the original packaging and this address:
Printer Systems Division, ERC 200 Monarch Lane
Door 39
Miamisburg, OH 45342
930
Flash erase error.
931
Flash write error.
932933 Parity error.
934
Framing error.
Buffer overrun. ..... 935Invalid record type.
937 Invalid hex data.
938
Invalid checksum.
939
Invalid record count.
940
Invalid flash address.
8-22 Diagnostics and Errors

## PRINTER OPTIMIZATION

This chapter provides information on how to improve your printer's performance by

- adjusting the print quality
- reducing the imaging time for printing
- providing general tips and hints for designing formats.

This printer uses "smart imaging" to image and print fields on supplies. Smart imaging remembers the exact boundaries and locations of each field and places a boundary box (white space) around each field. When a field changes that particular boundary box is cleared and the new field data is imaged. However, the new field data may require a larger boundary box than the previous field did. In some cases, neighboring fields that do not change may be covered with white space from the changing field's boundary box. To prevent existing fields from being covered by a changing field, see "Option 61 (Reimage Field)" in Chapter 4.

## Adjusting the Print Quality

Many factors affect print quality: type of supplies, print speed, print contrast, and the type of printer's application. This printer supports both thermal transfer and thermal direct supplies. The type of supply should match the printer's application.

- If you want to print at high speeds, you should use premium supplies. Using premium supplies reduces smudged images, hard to read labels, and faded print. Supply type, print speed, and print contrast work together to improve the print quality of labels. Contact your Sales Representative for more information.
- Select the print speed based on desired throughput and print quality. If print quality is more important, reduce the print speed, because a lower print speed increases the print quality of labels. If throughput is more important, increase the print speed as high as it will go to give you the needed print performance. See "Increasing Throughput" for more information.
- If the print quality is too light or too dark, adjust the print contrast. The correct contrast setting is important because it effects how well your bar codes scan and how long the printhead lasts.

Be sure to check the print quality of bar codes with a bar code verifier or scanner. If you do not have a verifier or scanner, check the bar code visually. A bar code that is IN SPEC has complete bars and clear spaces. Small alphanumeric characters look complete. A bar code that is IN SPEC may not look as good as one that is too dark, but it does have the highest scan rate.

Note: For highest scan rates, make sure there is adequate white space before and after the bar code. Also, a darker bar code does not mean it will scan better.


## 9-2 Printer Optimization

## Reducing Imaging Time

Imaging time is the time it takes the printer to image the data for the first label after the printer receives the format and batch packet. There are several ways to reduce the imaging time: send formats and configurations once, use a batch quantity of zero, or update batch fields.

- If the formats use the same check digit scheme, you only need to send the check digit scheme once.
- Send formats once and use the batch update field to change information on the label. Using a batch update field reduces the imaging time, because only the fields that change are imaged. All other fields remain the same as the last queued batch.
- Use the batch quantity zero method when your application requires operator intervention to enter data. While the operator is entering data, the previous field is sent with a batch quantity of zero. The printer images the field, but does not print it. After the operator enters the data for the last field, the batch quantity can be specified. The last remaining field is imaged, and the label prints almost immediately.

To pre-image a label:

1. Send the format and a batch header in one file. The first time you send the batch header, use the parameter $\mathbf{N}$ (new batch), and the parameter 0 for (zero quantity).

Example $\{B, 1, N, 0$ \}
The printer images constant text, line, box, and graphic fields, but does not print them.
2. Input data for each field, and send it with a batch header using the parameter $\mathbf{U}$ (update) and a quantity of zero. When the printer receives the data, it immediately images the field, but does not print it.

Example

```
{B,1,U,0 \
1,"RODGER DIST CTR" | }
{B,1,U,0 |
2,"8292" | }
```

At this time, the printer is imaging all associated fields, including fields that copy from other fields.
3. Repeat step 2 for each field except the last one.

```
{B,1,U,0 \
3,"BROADWAY" | }
{B,1,U,0 |
4,"555 WEST OAK AVE." | }
```

4. For the last field, input data and send it with the quantity of labels you want printed. When the printer receives input for the last field, it immediately prints the labels.

Example

```
{B,1,U,10 |
5,"DAYTON, OHIO" | }
```


## Increasing Throughput

Reducing the imaging time increases throughput. You can also increase the baud rate to increase the transmission time and increase throughput. Make sure the communication settings at the printer match those at the host. Using a baud rate of 19200 is almost twice as fast as 9600 baud. Using a baud rate of 38400 is almost twice as fast as 19200 baud.

## General Format Tips and Hints

The following tips and hints are helpful to keep in mind when designing MPCLII formats.

## With Packets

- Leave parameters blank that you do not need to change when sending online configuration packets. For example, $\{\mathbf{I}, \mathrm{A}, 1,, 1$ i\} prints a slashed zero and uses the last sent online system setup parameters.

You can group fields with similar parameters. For example

```
T,1,10,V,250,50,1,1,1,1,B,C,0,0 \
T,2,15,,,75!
T,3,,,,100!
```

The first text field sets all the parameters for that field. The second text field's number of characters and column location changes from what was defined in the first field. In the third text field, only the column location is changed. This method can be used on bar code and constant text fields as well.

9-4 Printer Optimization

Note: You should understand the basics of each field before using this method.

After you modify any fields or parameters with the optional entry method, resend the format, batch, or configuration packet to the printer.

## With Bar Codes

- Be careful when rotating or placing a UPC/EAN bar code with human readable characters, because the bottom reference point is at the bottom of the bars, not at the bottom of the human readable characters.


## With Fields

- Data that remains the same for each label should be in a constant text field. Data that varies for each label should be in a text field.
- Check for trailing spaces in text or constant text fields if you receive a "field off tag" error. An easy way to see trailing spaces is to print the field in the reverse font.
- Make sure if you magnify a field, it does not go off the label or cover another field. Magnifying a field increases the distance between the printed character and the edge of the cell.


## SAMPLES

This appendix contains sample formats. You can customize any of these formats to meet your needs.

These samples are oriented as if you are looking at the keypad, watching supplies print in the feed direction shown.

$\{\mathrm{F}, 25, \mathrm{~A}, \mathrm{R}, \mathrm{E}, 200,200$, "Fmt 25"
C, $140,40,0,1,2,1, W, C, 0,0, " S A M P L E$ FORMAT"
B, 1, 12, F, $85,40,1,2,40,5, L, 0$ i
$\mathrm{T}, 2,18, \mathrm{~V}, 50,50,1,3,1,1, B, L, 0,0$ | \}

## Sample Batch Packet

```
{B,25,N,1 }
1,"02802811111" |
2,"TEXT FIELD" | }
```

SAMPLE RONMAT


TEXT FIELD

## Sample MaxiCode Packets

MaxiCode is a two-dimensional bar code developed by UPS (United Parcel Service, Inc.). Data must be defined in a specific way for UPS. Refer to the Guide to Bar Coding with UPS or the AIM MaxiCode Specification for more details about data requirements.

The printer supports modes $0,1,2$, and 3 . Contact us for information about additional MaxiCode modes.

Mode	Description
0	Obsolete
1	Obsolete
2	Structured Message
3	Structured Message

You can select which mode to use in the bar code field or allow the printer to auto-select the mode ( 0,2 , or 3 ) based on your data. See "Defining a Bar Code Field" for more information. MaxiCode automatically pads data with the "!" character.

Note: MaxiCode does not support the NULL character.
Modes 2 and 3 are defined by the way the postal code, class of service, and country code fields are arranged. (The postal code, class of service, and country code are required fields.) Begin with the message header, then the primary data ( 15 characters), followed by the secondary message (up to 78 characters). Or, begin with the primary data, then the message header, followed by the secondary data. If the postal code data characters are all numeric then the MaxiCode symbol is set to Mode 2. If the characters are alphanumeric, or only contain ASCII characters 65 to 90, then the MaxiCode symbol is set to Mode 3.

If you receive an error 612, check your MaxiCode data. You may have not correctly structured or left out one of the three required fields (postal code, class of service, and country code) or the " $\sim 029$ " character.

## Mode 0 (Obsolete) Sample

$\{\mathrm{F}, 1, \mathrm{~A}, \mathrm{R}, \mathrm{E}, 0200,0200$, MAXICODE" |
$\mathrm{B}, 1,93, \mathrm{~V}, 020,20,33,7,0,8, \mathrm{~L}, 0$ । $\}$
$\{B, 1, N, 1$ i
1,"450660000" |

C, "001"
C, "840"
C, " [) ~030"
C, "01~02996"
C, "1Z12345678~029" |
C, "UPSN~029"
C, "12345A~029" |
C, "070~029"
C, "~029" i
C, "1/1~029" |
C, "15~029" |
C, "Y~029"
C,"60 SADDLEBROOK CT.~029" |
C, "DAYTON~029" ।
C, "OH~030" |
C, "~004" | \}

MaxiCode bar code (33)
Batch header
Postal code- zip code
(This field determines Mode)
Country code
Class of service
Message header
Transportation header
Tracking number
Origin carrier SCAC
UPS shipper number
Julian day of pickup
Shipment ID (empty)
Package count
Weight (lb.)
Address validation
Street address (empty)
City (empty)
State
EOT


## A-4 Samples

## Mode 2 Sample

MaxiCode bar code (33)
Message header
Transportation header
Postal Code
(This field determines Mode)
Country code
Class of service
Tracking number
Origin carrier SCAC
UPS shipper number
Julian day of pickup
Shipment ID (empty)
Package count
Weight (lb.)
Address validation
Street address (empty)
City (empty)
State
EOT

```
{F,1,A,R,E,200,200,"MAXI_M2" |
```

{F,1,A,R,E,200,200,"MAXI_M2" |
B,1,93,V,020,020,33,7,0,8,L,0 \ } MaxiCode bar code (33)
B,1,93,V,020,020,33,7,0,8,L,0 \ } MaxiCode bar code (33)
{B,1,N,1 }
{B,1,N,1 }
1,"[)>~030" ;
1,"[)>~030" ;
C,"01~02996" ;
C,"01~02996" ;
C,"068100000~029" ;
C,"068100000~029" ;
C,"840~029"'
C,"840~029"'
C,"001~029"।
C,"001~029"।
C,"1Z12345675~029"।
C,"1Z12345675~029"।
C,"UPSN~029"।
C,"UPSN~029"।
C,"12345E~029"।
C,"12345E~029"।
C,"089~029"।
C,"089~029"।
C,"~029" '
C,"~029" '
C,"1/1~029"'
C,"1/1~029"'
C,"10~029"।
C,"10~029"।
C,"Y~029":
C,"Y~029":
C,"~029" |
C,"~029" |
C,"~029" !
C,"~029" !
C,"CT~030":
C,"CT~030":
C,"~004": }

```
C,"~004": }
```



## Mode 3 Sample

$\{\mathrm{F}, 1, \mathrm{~A}, \mathrm{R}, \mathrm{E}, 200,200$, "MAXI_M3"
B, 1,93, V, 020, 020, 33, 7, 0, $8, \mathrm{~L}, 0$ \} $\quad$ MaxiCode bar code (33)
$\{B, 1, N, 1$ |
1, " [) >~030"
C, "01~02996" |
C, "M5E1G45~029"

C, "124~029"
C, "066~029"
C, "1Z12345679~029" |
C, "UPSN~029"
C, "12345E~029" |
C, "089~029"
C, "~029"
C,"1/1~029"
C, "10~029"
C, "Y~029" |
C, "~029"
C, "TORONTO~029" |
C, "ON~030"
C, "~004" | \}

Message header
Transportation header
Postal Code
(This field determines Mode)
Country code
Class of service
Tracking number
Origin carrier SCAC
UPS shipper number
Julian day of pickup
Shipment ID (empty)
Package count
Weight (lb.)
Address validation
Street address (empty)
City (empty)
State
EOT

## A-6 Samples

## Sample Data Matrix Packets

Data Matrix (ECC-200) is a two-dimensional bar code which is made up of square modules arranged within a perimeter finder pattern. There are 24 square symbol sizes available ranging from 10 rows by 10 columns to 144 rows by 144 columns. There are six rectangular symbol sizes available ranging from 8 rows by 8 columns to 16 rows by 48 columns. The symbol size is data dependent. Data Matrix automatically pads data.

Make sure you do not overlay other fields when designing your Data Matrix symbol. Smart imaging is automatically disabled on formats with a Data Matrix bar code. You should also allow a 3 or 4 dot "quiet zone" (blank space around the bar code's perimeter) for scanning. See "Defining a Bar Code Field" for more information.

## Sample Batch Data with Special Characters

To use this character in the bar code	enter these characters in the batch data
null character	$\sim \sim @$
$\sim$ (tilde)	$\sim 126 \sim 126$
FNC1	$\sim \sim 1$

## Square Data Matrix Packet

```
{F,36,A,R,E,400,400,"DTMTRX1" :
B,1,50,V,50,100,35,0,100,8,L,0{}
```

\{B,36,N,1
1,"1234567890ABCDEFGHIJKLMNOPQRST" | \}
This example prints a one-inch wide by one-inch tall (100) square Data Matrix symbol using the default density (0) without any field rotation (0).

## Rectangular Data Matrix Packet

```
{F,36,A,R,E,400,400,"DTMTRX2" |
B,1,400,V,100,200,35,29,50,8,L,1 |}
```

\{B,36,N,1


1,"1234567890ABCDEFGHIJKLMNOPQRST" $\mid\}$
This example prints a one-inch by a half-inch tall (50) rectangular 16 rows by 36 columns (density 29) Data Matrix symbol rotated 90 (1).

## Sample Data Matrix with Function 1

$\{\mathrm{F}, 36, \mathrm{~A}, \mathrm{R}, \mathrm{E}, 400,400$, "DTMTRX1"
$\mathrm{B}, 1,50, \mathrm{~V}, 10,50,35,0,50,8, \mathrm{~L}, 0$ \{\}
$\{\mathrm{B}, 36, \mathrm{~N}, 1$ |
1, "~~110012345678902" $\mid\}$
This example prints a 0.50 -inch wide by 0.50 -inch tall (50) square Data Matrix symbol using the default density (0) without any field rotation (0). FNC1 appears in the batch data as $\sim \sim 1$.

## HangTag Example

$\{\mathrm{F}, 1, \mathrm{~A}, \mathrm{R}, \mathrm{E}, 275,125$, "1TAG01"|
0047896320
C, 228, 20, 0, 50, 8, 8, A, L, 0, 0, " 0047896320 ", 11
C, 203, 20, 0, 50, 8, 8, A, L, 0, 0, " $045^{\prime \prime}, 1$
C, 203, 55, 0, 50, 8, 8, A, L, 0, 0, " 12 ", 11
C, $203,85,0,50,8,8, A, L, 0,0, " 099^{\prime \prime}, 11$
C, 178, 20, 0, 50, 8, 8, A, L, 0, 0, "00654113", 11
C, $178,85,0,50,8,8, A, L, 0,0, " 1158^{\prime \prime}, 1!$
C, 54, 37, 0, 50, 14, 14, A, L, 0, 0, "\$49.99", 1!\}
Sample Batch Packet
$\{B, 1, N, 1 \mid E, 0,0,1,1,0,1\}\}$

## Tag Example

$\{\mathrm{F}, 1, \mathrm{~A}, \mathrm{R}, \mathrm{E}, 200,150$, "1LAB1520"
C, 44, 40, 0, 50, 9, 9, A, L, 0, 0, "PEANUTS", 11
B, 1, 12, F, 125, 25, 1, 2, 50, 7, L, 01
R, 1, "028400067362"|
C, 20, 34, 0, 50, 8, 8, A, L, 0, 0, "*SALT FREE*", 1!
C, 84, 45, 0, 50, 14, 14, A, L, 0, 0, "\$1.19", 1! \}

## Sample Batch Packet

$\{B, 1, N, 1 i E, 0,0,1,1,0,1 i\}$


PEANUTS
*SALT FREE*

## Label Example

```
{F,1,A,R,E, 300,150,"1LAB1530";
C,100,90,0,50,10,10,A,L,0,1,"BATTERY PACK", 11
C,20,130,0,50,10,10,A,L,0,1,"1452-99311", 11
C,230,128,0,50,12,10,A,L,0,1,"$5.99", 11
B,1,9, F, 75,55, 4, 7, 40, 8, L, 1!
R,5,N!
R,1,"031535512"!
T,2,9,V,125,67,0,50, 8, 8, A, L, 0, 1, 1।
R,4,1,1,9,1,1{}
```


## Sample Batch Packet


$\{B, 1, N, 1|E, 0,0,1,1,0,1|$
1, "AAAAAAAAA"
2,"KKKKKKKKK"i\}

## Receipt Format Example

$\{\mathrm{E}, 1, \mathrm{~A}, \mathrm{R}, \mathrm{E}, 300,175$, "1Garage"
C, 277, 15, 0, 50, 10, 18, A, L, 0, 0, "KRAMER'S", 1!
C, 22 $2,4,0,50,8,8, A, L, 0,0, " C a n$ Opener", 1
C, 202, 4, 0, 50, 8, 8, A, L, 0, 0, "Travel Iron", 1!
C, 179, 4, 0, 50, 8, 8, A, L, 0, 0, "Total", 1i
C, $163,81,0,50,8,8, A, L, 0,0, " T a x ", 11$
C, $140,32,0,50,8,8, A, L, 0,0, " T O T A L S A L E ", 11$
$C, 86,47,0,50,9,9, A, L, 0,0, " * * P A$ I D * *", 11
C, 60, 45, 0, 50, 9, 9, A, L, 0, 0, "THANK YOU!", 1!
C, $256,35,0,50,10,10, A, L, 0,0, " G A R A G E$ SALE", 1!
C, 223, 122, 0, 50, 8, 8, A, L, 0, 0, "\$2. 50", 11
C, 202, 122, 0, 50, 8, 8, A, L, 0, 0, "\$1.50", 11
C, $182,122,0,50,8,8, A, L, 0,0, " \$ 4.00 ", 11$
C, 163, 122, 0, 50, 8, 8, A, L, 0, 0, "\$0.26", 11
C, 140, 123, 0, 50, 8, 8, A, L, 0, 0, "\$4.26", 1! \}

## KRAMER'S <br> garage sale

Can Opener		$\$ 2.50$
Travel Iron		$\$ 1.50$
Total		$\$ 4.00$
	Tax	$\$ 0.26$
TOTAL SALE		$\$ 4.26$

* *PAID * *

THANK YOU!

## Sample Batch Packet

$\{B, 1, N, 1 \mid E, 0,0,1,1,0,1\}\}$

## Label Sample 2

$\{\mathrm{F}, 1, \mathrm{~A}, \mathrm{R}, \mathrm{E}, 110,200$, "1LAB2011"
C, $92,70,0,50,7,7, A, L, 0,0$, "PRETZELS", 11
B, 1, 12, F, 45, 50, 1, 2, 40, 7, L, 01
R, 1, "028400067362"
C, 18, 105, 0, 50, 10, 10, A, L, 0, 0, "\$. $79^{\prime \prime}$, 1! \}

## Sample Batch Packet

PRETZELS

$\{B, 1, N, 1 \mid E, 0,0,1,1,0,1\}\}$

## Label Sample 3

$\{\mathrm{F}, 1, \mathrm{~A}, \mathrm{R}, \mathrm{E}, 400,200$, "1LAB2040"
$\mathrm{C}, 150,21,0,50,14,12, A, L, 0,1, " B A T T E R Y$ PACK", 1!
C, 150, 46, 0, 50, 14, 12, A, L, 0, 1, "WAREHOUSE 12", 1!
C, 285, 70, 0, 50, 10, 10, A, L, 0, 1, " $07 / 14 / 00$ ", 11
C, 110, 70, 0, 50, 10, 10, A, L, 0, 1, "4425", 11
B, 1, 13, F, $95,165,8,6,90,8, L, 1!$
R, 5, Ni
R, 1, "0315355110299"i
$\mathrm{T}, 2,13, \mathrm{~V}, 214,176,0,50,7,9, \mathrm{~A}, \mathrm{~L}, 0,1,11$
$R, 4,1,1,13,1,1\}$

## Sample Batch Packet

$\{B, 1, N, 1 \mid E, 0,0,1,1,0,1\}$
1, "AAAAAAAAAAAAA"
2,"KKKKKKKKKKKKK"i\}


## FONTS

Our printers support two types of fonts: Bitmapped (traditional printer fonts such as Standard and Reduced) and
Scalable/TrueType® (Font 50). This appendix gives a brief overview of each type of font and how your printer interprets fonts. It also shows examples of the fonts loaded in your printer.

Number	Font Size and Appearance	Type of Spacing	\# of Dots Between Characters
1	Standard	monospaced	3 (203 dpi) 5 (300 dpi)
2	Reduced	monospaced	1 (203 dpi) 2 (300 dpi)
3	Bold	monospaced	3 (203 dpi) 5 (300 dpi)
4	OCRA-like	monospaced	3 (203 dpi) 5 (300 dpi)
5	HR1 - only for numeric data	monospaced	2 (203 dpi) 3 (300 dpi)
6	HR2 - only for numeric data	monospaced	1 (203 dpi) $2(300 \mathrm{dpi})$
10	CG Triumvirate ${ }^{\text {TM }}$ Typeface Bold ( 9 pt . at 203 dpi or 8 pt . at 300 dpi )	proportional	varies w/ each letter
11	6 pt. CG Triumvirate ${ }^{\text {TM }}$ Typeface	proportional	varies w/ each letter
50	EFF Swiss Bold (TrueType®)	scalable	varies w/each letter

* The CG Triumvirate ${ }^{\text {TM }}$ typefaces support only ANSI and DOS Code Page 437 and 850 Symbol Sets. The scalable font does not support Code Page 1256 (Arabic).

These samples were printed using the Internal Symbol set．

Standard Font

ABCDEFGHIJKLM NOPQRSTUVWXYZ abcdefghijklm nopqrstuvwxyz 0123456789：； ＝＞？${ }^{\text {！}}$＂\＃\＄\％\＆＇（） ＊＋，－．／［\］＾＿\｛ † \}~ÇüéEæǽáíó
 \＄£¥PFPL．KMgREW

ABCDEFGHIJKLM NOPQRSTUVWXYZ abcdefghijklm nopqrstuvwxyz 0123456789：； ＝＞？回＂\＃\＄\％＇（）






OCRA－like Font
ABCDEFGHIJKLM NOPQRSTUVUXYZ 0123454789く＞＂

 ABCDEFGHIJKLM NOPQRSTUVUXYZ 0123454789く＞＂



## Reduced Font

ABCDEFGHIJJLLM NOPQRSTUVHXYZ abcdefghijkIm nopqres tuvwxyz 0123456789：\ll

 \｛\}"CuiéÉałfáióú


 ABEDEFGHITRLLH NOPQRSTUYHKYZ abede fghijkim nopqrs tuvwxyz 0123456789：：＜ $\Rightarrow$ 7回！＂朝民！ ＊,.$+- /[\mathrm{M}]^{\wedge}$

 5Exprlif


## Bold Font

ABCDEFGHIJKLM NOPQRSTUVWXYZ 0123456789：；＜ ＝＞？＠！＂\＃\＄\％s＇（） ＊＋，.$- /[\backslash]^{\wedge}$
 B¥


## EFF Swiss Bold Font

ABCDEFGHIJKLM
NOPQRSTUVWXYZ
abcdefghijklm
nopqrstuvwxyz
0123456789：；＜＝＞？
©！＂\＃\＄\％\＆＇0＊＋，－．l
［1］＾＿\｛｜\}-Є,
＂，＂＂．－－тms，ce
N̄ÒóốōÖ×øÙบ̌ûŪÝ
PBàáâāäåæçèéê
ëiiī̄ōñòóōō：
øùưưüū́py
＊Printed with ANSI Symbol Set

These samples were printed using Code Page 437.

CG Triumvirate ${ }^{\text {TM }}$ Typeface Bold
ABCDEFGHIJKLM NOPQRSTUVWXYZ
abcdefghijklm nopqrstuvwxyz 0123456789：；＜＝＞？
＠！＂\＃\＄\％\＆＇0＊＋，－．／
［1］＂＿\｛1\}~Cüé âäàăçêèėiiilïÅ ÉæたôöòûùÿÖÜcェ $¥ P t f a ́ a ́ o ́ u ́ n ̃ \tilde{N}^{00}{ }^{\circ}$ ¿





$\square а \beta Г \Pi \Sigma \sigma \mu \tau$ б $\odot \Omega$
$\delta \infty \varnothing \in \cap \equiv \pm \geq \leq 〔\rfloor \div \approx$ －．．．$\sqrt{\text { n2．}}$


## CG Triumvirate ${ }^{\text {TM }}$ Typeface



## Bitmap Font Information

Our bitmap fonts are either monospaced (each character occupies the same amount of space) or proportional (each character is a different width). Use monospaced fonts for price fields and data you want to list in a column. With proportionally spaced fonts, you may be able to place more characters on a line. However, you may need to experiment with these fonts and adjust field measurements in your format. The bitmapped fonts (either monospaced or proportional) appear jagged when magnified.
The magnification range is 1 to 7 .
Use the MONARCH® MPCL ${ }^{\text {TM }}$ Toolbox (Soft Font Utility), available on our Web site, to convert a bitmap font to Hex or Run-Length encoding for the printer. Select the point size and characters to print. Bitmap fonts may image faster than a TrueType font, but you are limited to the point size and characters you downloaded.

## Monospaced Font Magnification

Monospaced characters occupy the same amount of space within a magnification. Use monospaced fonts for price fields and data you want to list in a column. Decide how wide and tall you want the characters to appear on the labels. The following two tables show the width and height of each of the monospaced fonts after magnification.

This table includes the default (3 dots for Standard, 1 dot for Reduced, 3 dots for Bold) spacing.I

	Width Mag.	Standard	Reduced	Bold
	Units	Character   Width Sample	Character   Width Sample	Character   Width Sample
1x	1/100 in. 1/10 mm Dots	$\begin{array}{ll} \hline 8.37 & \\ 21.26 & \text { A } \\ 17 & \end{array}$	$\begin{array}{ll} \hline 3.9 & \\ 9.9 & \\ 8 & \text { A } \end{array}$	$\begin{array}{\|ll\|} \hline 13.3 & \\ 33.78 & \\ 27 & \text { A } \end{array}$
7x	1/100 in. $1 / 10 \mathrm{~mm}$ Dots	$\left\lvert\, \begin{aligned} & 49.75 \\ & 126.37 \\ & 101 \end{aligned}\right.$	$\left\lvert\, \begin{array}{ll} 24.63 \\ 62.56 \\ 50 \end{array}\right.$	$\begin{aligned} & 84.24 \\ & 214 \\ & 171 \end{aligned}$

Only the $1 x$ width can be scanned with the OCRA-like font. Using a printhead with 203 dpi , the character widths are as follows: 7.9 (English), 20.1 (Metric), and 16 (Dots).

To calculate other font widths, multiply the font dots (14 dots for Standard, 7 dots for Reduced, 24 dots for Bold) by the magnification and add the default spacing ( 3 dots for Standard, 1 dot for Reduced, 3 dots for Bold) between characters.

B-4 Fonts

## Example

14 (Standard font dots) $\times 5$ (magnification) $=70+3$ (default spacing between characters). There are 73 dots in the Standard font at $5 x$.

Standard	A	$7 x$	f
$1 / 100 \mathrm{in}$.	10.8	75.9	
$1 / 10 \mathrm{~mm}$	27.4	192.8	
dots	22	154	


Reduced	1 x	A	7 x
$1 / 100 \mathrm{in}$.	6.9	48.28	
$1 / 10 \mathrm{~mm}$	17.5	122.6	
dots	14	98	



OCRA-like (1x only)

$1 / 100 \mathrm{in}$.	11.8
$1 / 10 \mathrm{~mm}$	30
dots	24

A

Fonts B-5

## Proportional Font Magnification

Each character in a proportionally spaced font is a different height and width. You may be able to place more characters on a line using proportionally spaced fonts. You may want to experiment with these fonts and adjust field measurements in your format as needed. The bitmapped fonts (either monospaced or proportional) appear jagged when magnified. The magnification range is 1 to 7 . The following tables provide height and width magnification of sample characters.

CG Triumvirate ${ }^{\text {TM }}$ Typeface Bold (9 pt.)

	Width Mag.		Minimum		Average		Maximum
1x	1/100 in.   1/10 mm   Dots	$\begin{array}{\|l} 1.48 \\ 3.76 \\ 3 \end{array}$	i	$\begin{array}{\|l} 6.4 \\ 16.26 \\ 13 \end{array}$	L	$\begin{aligned} & 10.8 \\ & 27.4 \\ & 22 \end{aligned}$	W
7x	$\begin{aligned} & 1 / 100 \mathrm{in} . \\ & 1 / 10 \mathrm{~mm} \\ & \text { Dots } \end{aligned}$	$\left\lvert\, \begin{aligned} & 10.3 \\ & 26.2 \\ & 21 \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & 44.8 \\ & 114 \\ & 91 \end{aligned}\right.$		$\begin{aligned} & 75.9 \\ & 192.8 \\ & 154 \end{aligned}$	迷

To calculate other font widths, multiply the font dots ( 3 dots for Minimum, 13 dots for Average, 22 dots for Maximum) by the magnification.

## Example

13 (Average font dots) x 5 (magnification) $=65$ dots in an average letter of the CG Triumvirate ${ }^{\text {TM }}$ Typeface Bold at $5 x$.

Height Magnification


B-6 Fonts

CG Triumvirate ${ }^{T M}$ Typeface (6 pt.)


## Height Maginfication

w

CG Triumvirate ${ }^{\text {TM }}$ Typeface	1 x	7 x
$1 / 100 \mathrm{in}$.	5.9	41.38
$1 / 10 \mathrm{~mm}$	14.99	105.1
dots	12	84

The scalable font is smooth at any point size. There are no jagged edges because the font is created from an equation every time it is used. The field width varies with each letter.

When you define formats using scalable fonts, remember to set the character rotation to $\mathbf{0}$, because it is not supported. However, field rotation is supported for text or constant text fields using the scalable font. The scalable font does not print a slashed zero.

Scalable fonts perform better in constant text fields, because those fields are imaged only once per batch, not once per label as in text fields. The transparent overlay allows closer field placement when using scalable fonts.

To use large point sizes (greater than 60), you must reconfigure memory and increase the size of the scalable (vector) fonts buffer.

The height and width magnification are defined in point size.
72 points = one inch. One inch = cell size. The cell size is the built-in space around the individual characters of the scalable font. The point size range is 4 to 255 . If the height and width are not set to the same point size, the printed characters look tall and thin or short and thick, which allows for greater flexibility in the appearance of the font.

The 72 point EFF Swiss Bold sample shows the one inch cell size.
6pt Sample

10pt Sample

## 24pt Sample

48pt Sample

## 72 pt S a m p le

## TrueType Font Information

TrueType fonts follow the TrueType outline font standard. These fonts are smooth at any point size. There are no jagged edges, because the font is created from an equation every time it is used. The height and width magnification are defined in point size. 72 points $=$ one inch.
One inch = cell size. The cell size is the built-in space around the individual characters of the scalable font. The point size range is 4 to 255 . The field width varies with each letter. The printer can accept downloaded TrueType fonts.

## Downloading TrueType Fonts

The MONARCH® MPCL ${ }^{\text {TM }}$ Toolbox (Font Utility) is available on our Web site and converts TrueType fonts to Hex or Run-Length encoding for the printer.

When downloading a TrueType font, you download the entire font, not particular characters or one point size. You can print a variety of symbol sets with International (Turkish, Latin, Spanish, etc.) characters. TrueType fonts are designed to be regionally specific; therefore, all symbol sets may not be supported in a given font.

These font files are large and may image slower than bitmap fonts. The size of the font file, in bytes, is the minimum amount of memory you must have available for fonts in the printer's downloadable fonts buffer.

You may need to reallocate memory to use downloaded TrueType fonts. After reallocating memory, resend the font, format, and batch packets. See "Defining the Memory Configuration Packet" in Chapter 2 for more information. Also, Chapter 2 lists some special considerations when defining memory for downloaded TrueType fonts.

## Using International Fonts

International fonts are available as bitmap or TrueType fonts. See "Bitmap Font Information" or "TrueType Font Information" for more details. To use these fonts, you must purchase the memory expansion option and download the font to the printer.

To use International fonts, consider the following information:

- All fonts contain an internal character mapping. The mapping is organized by one or more standards, such as BIG5. These mapping standards can provide over 65,000 characters, which are not represented in this manual.
The printer supports several mapping standards:
- Unicode (UCS-2)
- BIG5
- GB2312
- SJIS
- Specify a symbol set based on the characters to print and one that is compatible with the font's character mapping. For example, to print Japanese characters, select symbol set 932 (Japanese Shift JIS) and a font compatible with that symbol set. See "Selecting a Symbol Set" for more information.
- To enter batch data, use the method specified by the font's character mapping and a compatible symbol set.


## Selecting a Symbol Set

Specify a symbol set based on the characters to print and one that is compatible with the font's character mapping. The symbol set parameter identifies the character mapping used in the text field or constant text field, for example, Unicode, BIG5, etc. If no symbol set is selected, the default symbol set (Internal Symbol Set) is used.

The printer automatically translates some character mappings to others. For example, if you need a BIG5 font, it is possible to use Unicode text data. Use Unicode in the symbol set parameter to indicate the text mapping and select the BIG5 font needed in the font parameter (T8 or C5). The printer automatically translates the Unicode character values into BIG5 values before printing the character.

The following table lists the compatible mappings and symbol sets.

Font Character Mapping	Symbol Set Parameter (T15, C13, or A6)				
Batch Data*	TrueType Font   Character Mapping	use in text or constant text fields			
Unicode	BIG5	102 - Unicode   If you are unsure which character mapping to select, use this   symbol set, because the printer automatically translates the   character mappings.			
Unicode	SJIS				
Unicode	KSC5601				
Unicode	GB2312				

* Characters in batch data must be entered based on their mapping (Unicode, BIG5, etc.).

Note: Symbol set 102 requires a downloaded International TrueType font.

This example prints these four characters with Unicode batch data of $\sim 125 \sim 000, \sim 125 \sim 002, \sim 125 \sim 004$ and $\sim 125 \sim 005$ ．

## 紀紂約紅

Refer to the Internet for a listing of the characters in each code page． Search on a particular code page，such as＂codepage 936＂to view the characters in that code page．

## Licensing Your Fonts

We provide you with tools to create and download TrueType fonts． However，it is your responsibility to purchase and license any fonts you download to your printer．Contact your font supplier for licensing information．Additional fonts that are compatible with the printer can be purchased from：

The Electronic Font Foundry
11 Silwood Road；Ascot；SL5 OPY；England
（0）1344 875201
www．eff．co．uk
Korean，Chinese，and Japanese fonts can be purchased from：
Dynalab Inc．
2055 Gateway Place；Suite 400；San Jose，CA 95110
408－490－4224
www．dynalab．com

B－12 Fonts

## Locating the Font Number in a Font Packet

If you are creating font packets, the font number is the second parameter in the packet. Software is available to create the font data and packet. Call Technical Support for more information.

```
Example
```

```
{W,200,A,M,68 : FontNumber
```

{W,200,A,M,68 : FontNumber
font data!
font data!
font data |}

```
font data |}
```

Use this number in T8 or in C5. See "Defining Text Fields" or "Defining Constant Text Fields" in Chapter 2 for more information.I

Example	-1, Font Number
	$\mathrm{T}, 1,10, \mathrm{~V}, 30,10,0,200,1,1, \mathrm{~B}, \mathrm{~L}, 0,0,0$ i
	C, 50, 30, 0, 200, 1, 1, B, L, 0, 0, "MONARCH", 0 :
	入 FontNumber

Defines a text and constant text field using the downloaded (\#200) font.

B-14 Fonts

## SYMBOL SETSICODE PAGES

This appendix contains a listing of the symbol sets, code pages, and extended character sets the printer supports.

Use the charts in this appendix to convert dot sequences from the image dot pattern to codes you can use in the fields. Use the Binary to Hex Conversion Chart to convert Binary dot sequences to Hexadecimal numbers for bitmap files. Use the Dot to Run Length Encoding Chart to convert dot sequences to alphabetic characters for bitmap files.

## Supported Symbol Sets and Code Pages

The printers support these symbol sets and code pages: Internal, ANSI, Bold, OCRA Character Set, DOS Code Page 437 and 850. Additional Code Pages are supported with downloaded TrueType or Unicode (double-byte) fonts.

The printer defaults to the internal symbol set. See "Defining the System Setup Packet" in Chapter 2 to change the symbol set.

## Selecting a Symbol Set or Code Page

The CG Triumvirate ${ }^{\text {TM }}$ typefaces support only the ANSI and DOS Code Page 437 and 850 Symbol Sets. These fonts print a slashed zero when using the ANSI symbol set.

Internal

ANSI

DOS Code
Pages 437 or 850

Use this symbol set to print international monetary symbols, the trademark ( ${ }^{\mathrm{TM}}$ ) symbol, and for formats that may be used on other MPCLII printers.

Use this symbol set with proportionally spaced fonts.

Use this symbol set for extended and international characters with proportionally spaced fonts.

## Using Code 128 Function Codes

This table lists the characters for Bar Code 128 function codes. These functions are used with scanners.

Code	Function Code
$\sim 201$	F1
$\sim 202$	F2
$\sim 203$	F3
$\sim 204$	F4

## Entering Extended Characters

When using extended characters in your batch data file, type a tilde in front of the three-digit code. For example, if you want to include the character $\hat{A}$ in a text field using the Internal Symbol Set, type:

$$
1, " \sim 142 "
$$

## Using International Character Sets/Code Pages

Symbol sets 852-860, and 1250-1258 may only be used with the scalable font (font\#50) or downloaded TrueType fonts. TrueType fonts are designed to be regionally specific; therefore, all symbol sets may not be supported in a given font. For example, to print Hebrew characters, you need to find a font (such as Arial) that supports Hebrew characters; convert, and then download the font to your printer. Make sure the correct symbol set for Hebrew characters is selected.

Font 50 does not print the slashed zero or support Code Page 1256 (Arabic). The Euro-dollar symbol at position $\sim 192$ is only available in the Standard, Reduced, and Bold fonts.

Code page 102 contains thousands of characters, which are not represented in this manual. These code pages requireadditional memory and a downloaded International TrueType font.

The Code Pages (437 and greater) on the following pages were printed using Arial or a similar downloaded TrueType font. To determine the character code, add the column number and row number for the character. For example, to produce the $\ddot{y}$ character with the ANSI character set, you would press Alt 255 (column 15 + row 240).

C-2 Symbol Sets/Code Pages

240																m
224	$\alpha$	$\beta$														
208			$\emptyset$				$\varnothing$									
192	€							-								
176		\$	£	¥	M	F	P	L.	Kr	M	$\underline{9}$	$\mathrm{R}_{5}$	R	W	B	\#
160	á	í	ó	ú	ก	N	$\underline{ }$	$\stackrel{ }{\square}$	$\dot{\text { c }}$	-	$\checkmark$	1/2	1/4	;	<	"
144	E	æ	\#	ô	ö	ò	û	ù	$\ddot{\mathrm{y}}$	0	U̇	¢	£	\#	P	$f$
128	Ç	$\ddot{\mathrm{u}}$	é	à	ä	à	a	ç	ê	ë	è	i	令	i	A	Å
112	p	q	r	$s$	t	u	v	w	x	Y	z	\{	I	\}	$\sim$	
96	-	a	b	c	d	e	f	g	h	i	j	k	1	m	n	$\bigcirc$
80	P	Q	R	S	T	U	V	W	X	Y	Z	[	1	]	$\wedge$	-
64	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
48	0	1	2	3	4	5	6	7	8	9	:	,	$<$	$=$	$>$	?
32		!	"	\#	\$	\%	$\&$	'	(	)	*	+	,	-	-	/
16																
0																
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

ANSI Symbol Set


Bold Character Set

240
${ }^{224}$
${ }^{208}$
${ }_{192}$ €
${ }^{128}$
${ }^{12}$
${ }_{96}$
${ }^{80} \mathrm{P}$ Q R S T UVWXYZ [ ${ }^{\text {a }}$ ] ${ }^{\text {® }}$
${ }^{64}$ @ B C DEFGHIJKLMN0
${ }^{48} 0123456789:$; $<=>$ ?
${ }^{32}$ ! "\# \$ \% \& ' ( ) * + , - /
16

C-4 Symbol Sets/Code Pages

## OCRA Character Set

${ }^{240}$															
${ }^{224}$															
${ }^{208}$															
192															
180															
144															
${ }^{128}$															
${ }^{112}$															
${ }^{96}$															
${ }^{80} \mathrm{P}$ QRSTUVWX															
		A	B	C							K	L	M		0
		1	2	9											
			"		+	\%						ᄀ	-		
	。	1	2			5						12	13		

Code Page 437 (Latin U.S.)

Code Page 850 (Latin 1)


Code Page 852 (Latin 2)


C-6 Symbol Sets/Code Pages


Code Page 857 (IBM Turkish)


Code Page 860 (MS-DOS Portuguese)

Code Page 1250 (Latin 2)


C-8 Symbol Sets/Code Pages

$$
\begin{aligned}
& 240 \text { р с Т у ф х ц ч ш щ ъ ы b э ю я } \\
& { }^{224} \text { а } 6 \text { в гд е ж з и й к л М н о п } \\
& { }^{208} \mathrm{P} \text { С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я } \\
& 192 \text { А В Г Д Е Ж З ИЙ К Л М Н О П } \\
& 176 \circ \pm \mathrm{I} \text { i } \upharpoonright \mu \text { ๆ } \cdot \text { ë № } \epsilon \gg \mathrm{j} \text { s ï } \\
& { }_{160} \text { y̆ y̆ J « 「: § Ё © } \in \ll \neg-® \text { Ï }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{128} \text { 万「́, 「́ "... } \dagger \neq € \% \text { Љ } \\
& { }^{112} \mathrm{p} q \mathrm{r} \mathrm{~s} \mathrm{t} u \vee \mathrm{u} \times \mathrm{y} \mathrm{z}\{\mid\} \sim \\
& 96 \text { ' } a b c d e f g h i j k l m n o \\
& { }^{80} \mathrm{P} \text { Q R S T U V W X Y Z [ \ ] } \wedge_{-} \\
& { }^{64} \text { @ A B C DEFGHI J K L M N O } \\
& \begin{array}{lllllllllllllllll}
48 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & : & ; & < & > & \text { ? } \\
32 & 1 & 11 & \# & \$ & \% & \& & 1 & () & * & + & , & - & /
\end{array} \\
& 16 \\
& 0
\end{aligned}
$$

## Code Page 1252 （Latin 1）

$$
\begin{aligned}
& 240 \text { ð ñ ò ó ô õ ö } \div \varnothing \text { ù ú û ü ý } p \text { ÿ } \\
& { }^{224} \text { à á â ã ä å æç è é ê ë ì í î ï } \\
& 208 Ð \text { Ñ Ò Ó Ô Õ Ö } \times \varnothing \text { Ù Ú Û Ü Ý } P \text { B } \\
& { }_{192} \text { À Á Â Ã Ä A Æ Ç È É Ê Ë Ì Í } \hat{I} \text { İ }
\end{aligned}
$$

$$
\begin{aligned}
& { }_{112} \mathrm{p} \text { q r s t u v wxy z }\{\text { | }\} \sim \\
& { }_{96} \text { ` } a b c d e f g h i j k l m n o \\
& { }^{s o} P \mathrm{Q} R \mathrm{~S} T \mathrm{U} V \mathrm{~W} \times \mathrm{Y} Z[\mathrm{Z}] \wedge \text { _ } \\
& { }^{64} \text { @ A B C D E F G H I J K L M N O } \\
& \begin{array}{lllllllllllllllll}
{ }^{48} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & : & ; & = & > \\
32 & ! & " & \# & \$ & \% & \& & 1 & ( & ) & * & + & - & /
\end{array} \\
& 16 \\
& 0 \\
& \begin{array}{lllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14
\end{array}
\end{aligned}
$$



## Code Page 1254 (Turkish)



C-10 Symbol Sets/Code Pages


## Code Page 1256 (Arabic)

Code Page 1257 (Baltic)

## Code Page 1258 (Vietnamese)

## ASCII to Hexadecimal Conversion Chart

Use the chart below to translate the characters printed on your test label. The chart lists ASCII characters and their hexadecimal and decimal equivalents.

Char.	Hex	Decimal	Char.	Hex	Decimal
NUL	00	0	DC2	12	18
SOH	01	1	DC3	13	19
STX	02	2	DC4	14	20
ETX	03	3	NAK	15	21
EOT	04	4	SYN	16	22
ENQ	05	5	ETB	17	23
ACK	06	6	CAN	18	24
BEL	07	7	EM	19	25
Backspace	08	8	SUB	1 A	26
Tab	09	9	Escape	1B	27
linefeed	0A	10	cursor right	1 C	28
home	OB	11	cursor left	1D	29
form feed	0 C	12	cursor up	1E	30
carriage return	OD	13	cursor down	1F	31
so	OE	14	space	20	32
SI	OF	15	!	21	33
DLE	10	16	"	22	34
DC1	11	17	\#	23	35

ASCII to Hexadecimal Conversion Chart (continued)

Char.	Hex	Decimal	Char.	Hex	Decimal
\$	24	36	;	3B	59
\%	25	37	$<$	3 C	60
\&	26	38	=	3D	61
'	27	39	>	3E	62
$($	28	40	?	3F	63
)	29	41	@	40	64
*	2A	42	A	41	65
++	2 B	43	B	42	66
,	2 C	44	C	43	67
-	2D	45	D	44	68
.	2E	46	E	45	69
1	2 F	47	F	46	70
0	30	48	G	47	71
1	31	49	H	48	72
2	32	50	1	49	73
3	33	51	J	4A	74
4	34	52	K	4B	75
5	35	53	L	4 C	76
6	36	54	M	4D	77
7	37	55	N	4E	78
8	38	56	0	4 F	79
9	39	57	P	50	80
:	3A	58	Q	51	81

C-14 Symbol Sets/Code Pages

## ASCII to Hexadecimal Conversion Chart (continued)

Char.	Hex	Decimal	Char.	Hex	Decimal
R	52	82	i	69	105
S	53	83	j	6A	106
T	54	84	k	6B	107
U	55	85	I	6 C	108
V	56	86	m	6D	109
W	57	87	n	6E	110
X	58	88	-	6 F	111
Y	59	89	p	70	112
Z	5A	90	q	71	113
[	5B	91	$r$	72	114
1	5 C	92	s	73	115
]	5D	93	t	74	116
$\wedge \wedge$	5E	94	$u$	75	117
-	5F	95	$v$	76	118
	60	96	w	77	119
a	61	97	x	78	120
b	62	98	y	79	121
c	63	99	z	7 A	122
d	64	100	\{	7B	123
e	65	101	1	7 C	124
$f$	66	102	\}	7 D	125
g	67	103	$\sim$	7E	126
h	68	104	delete	7F	127

## Binary to Hex Conversion Chart

Binary	Hex	Binary	Hex
00000000	00	00100000	20
00000001	01	00100001	21
00000010	02	00100010	22
00000011	03	00100011	23
00000100	04	00100100	24
00000101	05	00100101	25
00000110	06	00100110	26
00000111	07	00100111	27
00001000	08	00101000	28
00001001	09	00101001	29
00001010	0A	00101010	2A
00001011	OB	00101011	2B
00001100	OC	00101100	2 C
00001101	OD	00101101	2D
00001110	OE	00101110	2E
00001111	OF	00101111	2F
00010000	10	00110000	30
00010001	11	00110001	31
00010010	12	00110010	32
00010011	13	00110011	33
00010100	14	00110100	34
00010101	15	00110101	35
00010110	16	00110110	36
00010111	17	00110111	37
00011000	18	00111000	38
00011001	19	00111001	39
00011010	1A	00111010	3A
00011011	1 B	00111011	3B
00011100	1 C	00111100	3 C
00011101	1D	00111101	3D
00011110	1E	00111110	3E
00011111	1F	00111111	3F

## C-16 Symbol Sets/Code Pages

Binary to Hexadecimal Conversion Chart (continued)

Binary	Hex	Binary	Hex
01000000	40	01100000	60
01000001	41	01100001	61
01000010	42	01100010	62
01000011	43	01100011	63
01000100	44	01100100	64
01000101	45	01100101	65
01000110	46	01100110	66
01000111	47	01100111	67
01001000	48	01101000	68
01001001	49	01101001	69
01001010	4A	01101010	6 A
01001011	4B	01101011	6B
01001100	4 C	01101100	6 C
01001101	4D	01101101	6D
01001110	4E	01101110	6 E
01001111	4 F	01101111	6 F
01010000	50	01110000	70
01010001	51	01110001	71
01010010	52	01110010	72
01010011	53	01110011	73
01010100	54	01110100	74
01010101	55	01110101	75
01010110	56	01110110	76
01010111	57	01110111	77
01011000	58	01111000	78
01011001	59	01111001	79
01011010	5A	01111010	7A
01011011	5B	01111011	7B
01011100	5 C	01111100	7 C
01011101	5D	01111101	7D
01011110	5E	01111110	7E
01011111	5F	01111111	7F

Binary to Hexadecimal Conversion Chart (continued)

Binary	Hex	Binary	Hex
10000000	80	10100000	A0
10000001	81	10100001	A1
10000010	82	10100010	A2
10000011	83	10100011	A3
10000100	84	10100100	A4
10000101	85	10100101	A5
10000110	86	10100110	A6
10000111	87	10100111	A7
10001000	88	10101000	A8
10001001	89	10101001	A9
10001010	8A	10101010	AA
10001011	8B	10101011	$A B$
10001100	8C	10101100	AC
10001101	8D	10101101	AD
10001110	8E	10101110	AE
10001111	8F	10101111	AF
10010000	90	10110000	B0
10010001	91	10110001	B1
10010010	92	10110010	B2
10010011	93	10110011	B3
10010100	94	10110100	B4
10010101	95	10110101	B5
10010110	96	10110110	B6
10010111	97	10110111	B7
10011000	98	10111000	B8
10011001	99	10111001	B9
10011010	9A	10111010	BA
10011011	9 B	10111011	BB
10011100	9 C	10111100	BC
10011101	9 D	10111101	BD
10011110	9E	10111110	BC
10011111	9 F	10111111	BF

## C-18 Symbol Sets/Code Pages

Binary to Hexadecimal Conversion Chart (continued)

Binary	Hex	Binary	Hex
11000000	co	11100000	E0
11000001	C1	11100001	E1
11000010	C2	11100010	E2
11000011	C3	11100011	E3
11000100	C4	11100100	E4
11000101	C5	11100101	E5
11000110	C6	11100110	E6
11000111	C7	11100111	E7
11001000	C8	11101000	E8
11001001	C9	11101001	E9
11001010	CA	11101010	EA
11001011	CB	11101011	EB
11001100	CC	11101100	EC
11001101	CD	11101101	ED
11001110	CE	11101110	EE
11001111	CF	11101111	EF
11010000	D0	11110000	F0
11010001	D1	11110001	F1
11010010	D2	11110010	F2
11010011	D3	11110011	F3
11010100	D4	11110100	F4
11010101	D5	11110101	F5
11010110	D6	11110110	F6
11010111	D7	11110111	F7
11011000	D8	11111000	F8
11011001	D9	11111001	F9
11011010	DA	11111010	FA
11011011	DB	11111011	FB
11011100	DC	11111100	FC
11011101	DD	11111101	FD
11011110	DE	11111110	FE
11011111	DF	11111111	FF

## Dot to Run Length Encoding Chart

ON (Black) Dots

\# of Dots	Code	\# of Dots	Code
1	A	14	N
2	B	15	O
3	C	16	P
4	D	17	Q
5	E	18	S
6	F	19	T
7	G	U	
8	H	V	V
9	I	21	W
10	J	22	Y
11	K	23	Z
12	L	24	25

OFF (White Dots)

\# of Dots	Code	\# of Dots	Code
1	a	14	n
2	b	15	o
3	c	16	p
4	d	17	q
5	e	18	s
6	f	19	t
7	g	u	
8	h	20	v
9	i	21	w
10	j	22	x
11	k	23	y
12	l	24	z

C-20 Symbol Sets/Code Pages

## FORMAT DESIGN TOOLS

Use copies of these worksheets and grids to create formats, batch data, and check digit schemes. You may want to keep copies of the completed forms for your records:

- Online Configuration Worksheet
- Batch Worksheet
- Check Digit Worksheet
- Supply Layout Grids (English, Metric, Dots)
- Format Worksheet
- Sample Format Worksheet




## Batch Worksheet



	FIELD \＃	DATA
	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
	11	
$\frac{7}{O}$	12	
宊を	13	
	14	


	c	DATA
	C	
	c	
	c	
	c	
	c	
	c	
	c	
	c	
	c	
	c	
	c	
立	c	
¢z	c	
	c	



## Supply Layout (Inches)

- Indicates no-print area

Supply Layout (Metric)


## Supply Layout (Dots)

## - Indicates no-print area



D-8 Format Design Tools


Format Name
Format \#

## FORMAT WORKSHEET

Date
Supply Size
Supply Type
Customer Name
Software Version


## GLOSSARY

Batch Data
2,"Monarch"
Batch Control E,0,1,4,2

## Batch Header

 \{B,1,N,1\}Batch Packet
\{B,1,N,1
2,"Monarch" $\mid\}$
Bitmapped Fonts

Buffer

Field

Field Definition

Field Parameters

Flash Memory

Format

Defines the actual information (as fields within $\}$ ) printed on the label.

Defines the print job (as a field).

First line of a batch, immediately following (\{). Identifies the format and batch quantity.

Contains a batch header and the batch data. Enclosed within $\{$ \}.

Reside in the printer's memory. If you change the point size, you have changed the font. Magnifying these fonts causes some jaggedness to occur.

Storage area in the printer's memory that holds specific data (images, formats, etc).

Can be text, bar codes, lines, boxes, constant, or non-printable text. It is the result of a field definition.

Any string of parameters that pertain to one field. A field definition begins with a field identifier (such as $T$, B, D, C, etc.).
T,1,10,V,250,50,0,1,1,1,B,C,0

Parameters that apply to a field and are separated by commas. (In the above example, $\mathbf{B}$ is a field element for black print on a white background.)

Contains information that is SAVED when the printer is turned off.

Layout or design for your printed label.
$\left.\begin{array}{ll}\text { Format Header } & \begin{array}{l}\text { First line of a format, immediately following the start of } \\ \text { packet (\{). A format header must begin with F, followed } \\ \text { by various header elements. }\end{array} \\ \{\mathrm{F}, \mathrm{I}, \mathrm{A}, \mathrm{R}, \mathrm{E}, 200,200, \text { Fmt-1" }\end{array}\right\}$

## INDEX

A
adding custom fonts ..... 2-27
adjustments, print ..... 2-8
algorithm,in sum of digits ..... 4-16
algorithm,in sum of products ..... 4-15
alignment, bar code ..... 3-15
allocating
memory ..... 2-21
B
backfeed
packet syntax ..... 2-19
bar code
defining aspect ratios ..... 4-11
PDF417 options ..... 4-11
bar code alignment ..... 3-15
bar code density
syntax ..... 4-10
bar codes
character lengths ..... 3-9
customizing density ..... 4-9
defining ..... 3-8
defining densities ..... 4-10
determining distance ..... 3-10, 3-16
generating check digits ..... 4-8
justification ..... 3-15
list of types ..... 3-11
placing human readables ..... 9-5
rotating ..... 3-15
selecting a density ..... 3-11
selecting human readables ..... 3-15
batch
canceling printing ..... 2-16
clearing data from memory ..... 2-26
overview of packet ..... 6-2
batch control
definition of term ..... G-1
batch control field
defining ..... 6-3
syntax ..... 6-3
sample ..... 6-3
batch data
definition of term ..... G-1
sample with special chars ..... 6-4
using spec chars ..... 6-4
batch data field
defining ..... 6-3
syntax ..... 6-3
sample ..... 6-3
using entered/copied data ..... 6-4
batch header
syntax ..... 6-2
defining ..... 6-2
definition of term ..... G-1
sample ..... 6-2
using zero quantities ..... 9-3
batch method of downloading explained ..... 6-8
batch packet
definition of term ..... G-1
batch quantity zero downloading explained ..... 6-9
batch quantity, defined ..... 6-2
baud rate selection ..... 2-18
bitmap
defining fields ..... 5-12
defining next fields ..... 5-13
defining the header ..... 5-10
hexadecimal chart ..... C-16
hexadecimal method ..... 5-2, 5-4
overview ..... 5-2
run length chart ..... C-20
run length method ..... 5-2, 5-6
storing the image ..... 5-7
bitmapped fonts
definition of term ..... G-1
black to white print ratio ..... 5-3
boxes
defining ..... 3-23
determining distance ..... 3-23

buffer   definition of term	G-1
scalable font	2-24
buffer selection	2-21
buffer size selection 2-21	
C	
calling technical support changing	
backfeed control	2-19
bar code density	4-9
communication settings	2-18
control characters	2-14
memory configuration	2-21
security level of PDF417 4-10	4-10-4-11
character rotation	
in constant text field	3-18
in text field	3-6
characters	
magnifying font size	B-
number of in bar code	3-8
number of in text	3-3
padding	4-7
placement of human readables	bes
chart	
hexadecimal conversion	C-16
run length conversion	C-20
check digit option	
check digit schemes	
syntax	4-14
using sum of digits	4-16
using sum of products	4-15
check digit worksheet	D-3
check digits	
clearing scheme from memory	ory 2-26
customizing a scheme	4-14
generating	4-8
checking	
ENQ trailer characters	8-2
ENQ/IMD characters	8-2
job status	7-8
packet control characters	8-2
printer status	7-2
RS232 trailer characters	8-2
clearing packets	2-26

buffer selection 2-21
buffer size selection 2-21
calling technical support 8-4
changing
backfeed control 2-19
bar code density 4-9
communication settings 2-18
control characters 2-14
memory configuration 2-21
security level of PDF417 4-10-4-11
character rotation
in constant text field 3-18
in text field 3-6
characters
magnifying font size B-4
number of in bar code 3-8
number of in text 3-3
padding 4-7
placement of human readables 9-5
chart
hexadecimal conversion C-16
run length conversion C-20
check digit option
syntax
check digit schemes
$\quad$ syntax
using sum of digits 4-16
using sum of products 4-15
check digit worksheet D-3
check digits
clearing scheme from memory 2-26
customizing a scheme 4-14
generating 4-8
checking
ENQ trailer characters 8-2
ENQ/IMD characters 8-2
job status 7-8
packet control characters 8-2
printer status 7-2
RS232 trailer characters 8-2
clearing packets 2-26
code pages ..... C-1
1250 table ..... C-8
1251 table ..... C-9
1252 table ..... C-9
1253 table ..... C-10
1254 table ..... C-10
1255 table ..... C-11
1256 table ..... C-11
1257 table ..... C-12
1258 table ..... C-12
437 and 850 ..... C-1
437 table ..... C-5
850 table ..... C-6
852 table ..... C-6
855 table ..... C-7
857 table ..... C-7
860 table ..... C-8
ANSI table ..... C-4
Bold table ..... C-4
entering ..... C-2
International characters ..... 2-9
OCRA table ..... C-5
selecting ..... C-1
color options of text ..... 3-5, 3-18
communication
checklist for trouble ..... 8-4
packet syntax ..... 2-18
configuration
types of ..... 2-2
uploaded from printer ..... 2-7
configuration packets
backfeed control packet G ..... 2-19
communication settings packet $F$ ..... 2-18
control characters packet E ..... 2-14
guidelines ..... 2-8
header ..... 2-5
memory configuration packet M ..... 2-21
monetary formatting packet D ..... 2-13
overview ..... 2-5
print control packet C ..... 2-12
sample ..... 2-6
supply setup packet $B$ ..... 2-10
system setup packet $A$ ..... 2-9
constant text fields
character rotation 3-18
defining 3-16
determining distance 3-16
justification 3-18
modifying character height 3-17
modifying character width 3-17
rotating 3-18
sample $\quad 3-16,3-19$
control characters
factory defaults 2-3
resetting 2-15
selecting 2-14
selecting new 2-14
syntax 2-14
copy data
in partial form 4-6
merging fields 4-6
source field 4-5
syntax 4-3, 4-5
copying data, using option $4 \quad 4-5$
Cyrillic characters C-9
D
daily checklist 1-4
data
copy option $4 \quad 4-5$
deciding on a field type 1-7
for batch 6-3
list of errors 8-5
padding option 30 4-7
type restrictions option 2 4-4
data stream
examples 6-5, 6-7, A-3
Maxicode A-3
QR Code, structured append 6-7
Quick Response Code 6-5
data type restrictions
defining option 2 4-4
decimal point selection 2-13
decrementing fields
fixing the first number 4-12
syntax 4-12
using option $60 \quad 4-12$
defining
backfeed control packet G ..... 2-19
bar code type ..... 3-11
bar codes ..... 3-8
batch control field ..... 6-3
batch data field ..... 6-3
batch header ..... 6-2
bitmap fields ..... 5-12
boxes ..... 3-23
check digit scheme w/sod ..... 4-16
check digit scheme w/sop ..... 4-15
communication settings packet $F$ ..... 2-18
configuration header ..... 2-5
constant text fields ..... 3-16
control characters packet E ..... 2-14
duplicate fields ..... 5-14
font upload packet ..... 2-27
graphic header ..... 5-10
lines ..... 3-20
memory configuration packet M ..... 2-21
monetary formatting packet $D$ ..... 2-13
next-bitmap fields ..... 5-13
print control packet C ..... 2-12
supply setup packet $B$ ..... 2-10
system setup packet $A$ ..... 2-9
text fields ..... 3-3
definition of terms ..... G-1
density
using option 50 to customize ..... 4-9
design tools
about the grid ..... 1-6
check digit worksheet ..... D-3
format worksheet ..... D-1
online configuration worksheet ..... D-3
worksheet overview ..... 1-8
designing a format
drawing a sketch ..... 1-6
field type considerations ..... 1-7
filling in worksheets ..... 1-8
print area ..... 1-5
using grids ..... 1-6
worksheet overview ..... 1-8
determining format content ..... 1-5
device selection ..... 2-21
diagnostics

$$
\text { list of data errors } \quad 8-5
$$

list of data format errors $8-15$
list of flash memory errors
8-20
list of hard printer failure errors $8-21$
list of machine fault errors 8-17
other resources 8-5
printing test label 8-2
direction of
bar code field 3-15
constant text character 3-18
constant text field 3-18
lines 3-21
text character 3-6
text field 3-6
disable backfeed 2-19
double-byte fonts B-10
downloadable fonts
buffer 2-24
downloading
batch method 6-8
batch quantity zero method 6-9
methods 6-8
overview 6-1
sequential method 6-8

enable backfeed 2-19
enabling immediate commands 2-16
ENQ
printing existing config 8-2
reference table for byte 2 7-4
reference table of byte 3 7-6
requesting status 7-2
Response 7-2
erasing packets 2-26
errors
data, description of 8-5
flash memory 8-20
format 8-15
hard printer failures 8-21
machine faults 8-17
features
printer ..... 1-1
feed mode selection ..... 6-3
field
bitmap, defining ..... 5-12
definition of term ..... G-1
duplicate, defining ..... 5-14
next-bitmap, defining ..... 5-13
options ..... 4-11
field definition
definition of term ..... G-1
field elements
definition of term ..... G-1
field options
brief list of ..... 4-2
calculating check digits ..... 4-8
copy data ..... 4-5
customized bar code density ..... 4-9
data type restrictions ..... 4-4
inc/dec fields ..... 4-12
ordering ..... 4-2
overview ..... 4-2
padding data ..... 4-7
price field ..... 4-8
restrictions ..... 4-2
security/truncation for PDF417 ..... 4-10
using multiple ..... 4-2
width/length for PDF417 ..... 4-11
fields
bar code rotation ..... 3-15
batch control syntax ..... 6-3
batch data syntax ..... 6-3
constant text rotation ..... 3-18
deciding a type ..... 1-7
finding trailing spaces ..... 9-5
padding ..... 4-7
repeating parameters ..... 9-4
text field rotation ..... 3-6
types briefly described ..... 1-7
using a worksheet ..... 1-8
using data entry/copied fields ..... 6-4
fixed data
in constant text field ..... 3-18
in text field ..... 3-3
syntax ..... 4-4
flash memory ..... 1-4
definition of term ..... G-1
flash memory errors list of ..... 8-20
flow control selection ..... 2-18
font
legal information ..... B-12
scalable ..... B-8
TrueType ..... 2-10, B-1, B-9, B-12, C-2
font packets
clearing from memory ..... 2-26
font upload packet defining ..... 2-27
fonts
double-byte ..... B-10
monospaced magnification ..... B-4
optimizing ..... 9-4
proportional magnification ..... B-6
format
buffer ..... 2-24
definition of term ..... G-1
format header
definition of term ..... G-2
format worksheet ..... D-1
overview ..... 1-8
formats
clearing from memory ..... 2-26
decisions to make ..... 1-5
defining bar codes ..... 3-8
defining boxes ..... 3-23
defining constant text fields ..... 3-16
defining lines ..... 3-20
defining text fields ..... 3-3
defining the header ..... 3-2
designing ..... 1-4-1-6
determining content ..... 1-5
field types described briefly ..... 1-7
filling in worksheets ..... 1-8
referenced in batch packet ..... 6-2
sample ..... A-2
using grids ..... 1-6
formats, modifying ..... 6-10
formatting errors list of ..... 8-15
generating check digits
with option 31 ..... 4-8
graphic
defining bitmap fields ..... 5-12
defining duplicate fields ..... 5-14
defining next-bitmap fields ..... 5-13
defining the header ..... 5-10
hexadecimal chart ..... C-16
hexadecimal method ..... 5-2, 5-4
including in a format ..... 5-19
overview of bitmap ..... 5-2
run length chart ..... C-20
run length method ..... 5-2, 5-6
storing the image ..... 5-7
graphic packets clearing from memory ..... 2-26

grid
overview ..... 1-6
H
hard printer failure errors
list of ..... 8-21
help, getting ..... 8-4
hex graphic packet sample ..... 5-15
human readable characters
placement considerations ..... 9-5
selecting ..... 3-15
I
image buffer ..... 2-23
imaging
repeating parameters ..... 9-4
using zero batch headers ..... 9-3
imaging time when to use scalable fonts ..... 9-4
IMD
printing existing config ..... 8-2
immediate commands enabling ..... 2-16
sending ..... 2-16
table ..... 2-16
when to use ..... 2-16
incrementing field
restrictions 4-2
incrementing fields
fixing the first number
syntax
using option 60
4-12
4-12
4-12
inquiry request
explanation of
inquiry response
explanation of
International chars
symbol set
International code pages
J
job request
syntax
job response
explanation of $7-9$
syntax for 0-2 7-9
syntax for 3 7-10
syntax for 4 7-11
job status
explanation of response 7-9
requesting 7-8
table 7-12
justification
of bar code 3-15
of constant text fields 3-18
of text field 3-6

language, printer 2-9
Latin characters C-5-C-6, C-9
layout
decisions to make 1-5
designing a label 1-4
grid 1-6
print area
1-5
rough sketches 1-6
length
of a bar code field 3-8
of a text field 3-3
lines
defining 3-20
defining as segment 3-20
defining as vectors 3-20
determining distance 3-20
thickness 3-22

## M

machine errors list of 8-17
magnification considerations 9-5
of monospaced fonts B-4
of proportional fonts B-6
mapping
method, hexadecimal 5-2,5-4
method, run length 5-2, 5-6
margin adjustment selection 2-12
Maxicode
data stream A-3
MaxiCode information A-3
measurement on a grid 1-6
memory
allocating 2-21
clearing packets 2-26
packet syntax 2-21
storing images in RAM 5-7
memory buffer
downloadable fonts 2-24
format 2-24
image 2-23
receive 2-23
scalable font 2-24
transmit 2-23
merging
copied data 4-6
fields with option $4 \quad 4-5$
modifying formats 6-10
modulus
description of check digit calc 4-14
in sum of digits 4-16
in sum of products 4-15
monetary

$$
\text { decimal selection } \quad 2-13
$$

formatting syntax 2-13
list of options
2-13
symbol selection 2-13
symbol setting 2-13
using price formatting 4-8
monospaced fonts
definition of term
G-2
monospaced fonts, magnification of
B-4
0
online configuration worksheet D-3
online mode selection 2-9
$\begin{array}{ll}\text { opaque overlay } \\ \text { explanation } & 3-5\end{array}$
optimizing
print quality 9-2
print speed 9-2
repeating field parameters 9-4
using zero batch quantities 9-3
option
definition of term G-2
optional entry method 6-10
options
field 4-11
options,field 4-10
brief list of 4-2
calculating check digits 4-8
copy data 4-5
customized bar code density 4-9
data type restrictions 4-4
general overview 4-2
inc/dec fields 4-12
ordering 4-2
padding data 4-7
price formatting 4-8
restrictions 4-2
security/truncation for PDF417 4-10
using multiple 4-2
width/length for PDF417 4-11
packet
definition of term ..... G-2
packet A
syntax ..... 2-9
packet B
syntax ..... 2-10
packet C
syntax ..... 2-12
packet control characters factory defaults ..... 2-3
printing existing config ..... 8-2
resetting ..... 2-15
syntax ..... 2-14
packet D
syntax ..... 2-13
packet E
syntax ..... 2-14
packet F
syntax ..... 2-18
packet G
syntax ..... 2-19
packet M syntax ..... 2-21
packets
batch ..... 6-2
check digit scheme ..... 4-14
clearing from memory ..... 2-26
configuration ..... 2-5
configuration upload ..... 2-6-2-7
guidelines ..... 2-3
padding data ..... 4-7
syntax ..... 4-7
parameters
definition of term ..... G-1
for batch control field ..... 6-3
for batch data field ..... 6-3
for batch header ..... 6-2
repeating ..... 9-4
parity selection ..... 2-18
PDF417 bar codes
security/truncation ..... 4-10
width/length ..... 4-11
placing
human readables ..... 9-5
point size ..... B-8
polling for status
overview 7-1
positioning
graphic image in a field 5-9
graphic image in a format $5-10$
graphic image in a packet 5-9
pre-image
definition of term G-2
price fields
formatting option 4-8
monetary formatting 2-13
restrictions with check digits 4-8
restrictions with incrementing 4-2
syntax 4-9
print adjustments 2-8
print area 1-5
maximum size 1-5
print contrast
setting 2-12
print control
in batch control field
syntax 2-12
printer
features 1-1
printer configuration
backfeed control packet G 2-19
communication settings packet $F \quad 2-18$
control characters packet E 2-14
header 2-5
memory configuration packet $\mathrm{M} \quad 2-21$
monetary formatting packet D 2-13
packet C 2-12
packet guidelines 2-8
packet overview 2-5
packet sample 2-6
supply setup packet $B \quad 2-10$
system setup packet A 2-9
upload syntax 2-6-2-7
printer status
explanation of response 7-2
overview
7-1
requesting 7-2
syntax 7-2
printers
communication checklist 8-4
data errors 8-5
data formatting errors 8-15
hard printer failure errors 8-21
machine fault errors 8-17, 8-20
printing
black to white ratio 5-3
canceling 2-16
horiz adjustment 2-8
overview 6-1
test label 8-2
vert adjustment 2-8
problem
running out of printer memory 2-26
problems
check digit miscalculated 4-8
communication check 8-4
getting technical support 8-4
human readables cut off 9-5
image time and changing data 9-4
image time and unchanging data 9-3
imaging time and repeating field
parameters
incorrect symbols print 3-19
invalid packet syntax 2-3
list of data errors 8-5
list of flash memory errors 8-20
list of format errors 8-15
list of hard printer failure errors $8-21$
list of machine fault errors 8-17
missing/overlapping due to
magnification
no check digit generated 4-8
off tag errors 9-5
other resources 8-5
poor print quality 9-2
procedures
daily checklist 1-4
programming conventions 2-3
proportional fonts, magnification of B-6
proportionally spaced fonts
definition of term G-2

Index 8
Q
QR code, structured append data stream ..... 6-7
Quick Response code data stream ..... 6-5
R
RAM ..... 1-3
storing images ..... 5-7
receive buffer ..... 2-23
requesting job status explanation of ..... 7-8
requesting printer status explanation of ..... 7-2
overview ..... 7-1
resetting packet control characters ..... 2-15
response
to job request 0-2 ..... 7-9
to job request 3 ..... 7-10
to job request 4 ..... 7-11
ribbon selection ..... 2-10
rotating
bar codes ..... 3-15
constant text characters ..... 3-18
constant text fields ..... 3-18
text characters ..... 3-6
text fields ..... 3-6
rough sketches ..... 1-6
RS232 trailer characters
printing existing config ..... 8-2
run length graphic packet sample ..... 5-17
S
sample
backfeed control packet G ..... 2-19
bar code density option ..... 4-10
batch control field ..... 6-3
batch data field ..... 6-3
batch header ..... 6-2
batch method downloading ..... 6-9
calculate check digit option ..... 4-8
check digit scheme packet ..... 4-14
communication settings packet $F$ ..... 2-18
configuration packet ..... 2-6
control characters packet E ..... 2-14
copy field ..... 4-5
font packet ..... 2-28
font, bold style ..... B-5
font, OCRA style ..... B-5
font, standard style ..... B-5
format ..... A-2
format header ..... 3-2
hex graphic packet ..... 5-15
immediate command ..... 2-16
inc/dec field option ..... 4-12
inquiry response ..... 7-2
job request ..... 7-8
job response 0-2 ..... 7-9
job response 3 ..... 7-10
job response 4 ..... 7-11
memory configuration packet $F$ ..... 2-21
monetary formatting packet D ..... 2-13
monospaced font magnification ..... B-4
padding data ..... 4-7
price field option ..... 4-9
print control packet C ..... 2-12
printer configuration uploaded ..... 2-7
proportional font magnification ..... B-6
run length graphic packet ..... 5-17
sequential method downloading ..... 6-8
supply setup packet $B$ ..... 2-10
system setup packet A ..... 2-9
text field ..... 3-3
scalable font ..... B-8
buffer ..... 2-24
schemes
customizing check digits ..... 4-14
security/truncation using option 51 ..... 4-10
segments defining ..... 3-20
selecting bar code type ..... 3-11
selector, check digit description of ..... 4-14
sending immediate commands ..... 2-16
sequential downloading explained ..... 6-8
serial communication ..... 2-2
setting
backfeed distance 2-19
battery voltage 2-12
baud rate 2-18
dispense position 2-19
feed mode 2-10
flow control 2-18
format number 3-2
language $\quad 2-9$
margin position 2-12
monetary symbol 2-13
number of decimal places 2-13
online mode 2-9
parity 2-18
print contrast 2-12
print position 2-12
print speed 2-12
printhead width 2-12
ribbon 2-10
serial communication 2-2
stop bits 2-18
supply size 3-2
supply type/position 2-10
unit of measure 3-2
word length 2-18
size of
monospaced fonts B-4
proportaional fonts B-6
smart imaging 9-1
soft fonts
definition of term G-2
source field, of copy data 4-5
special characters
using in batch data 6-4
speed adjustment selection 2-12
standard features 1-1
status polling
overview 7-1
stop bits selection 2-18
storage device 5-7
storing
images
images in RAM 5-7
sum of digits calculation 4-16
sum of products calculation 4-15
supply
about the layout grid 1-6
measurement on a grid 1-6
type/position selection ..... 2-10
supply setup syntax ..... 2-10
symbol set ..... C-1
ANSI ..... C-1
entering ..... C-2
for International chars ..... B-11, C-2
Internal table ..... C-3
options ..... 3-7
selecting ..... C-1
symbols
monetary ..... 4-8
syntax
backfeed control packet G ..... 2-19
communication settings packet $F$ ..... 2-18
constant text field ..... 3-16, 3-19
font upload packet ..... 2-27
format header ..... 3-2
memory configuration packet M ..... 2-21
monetary formatting packet D ..... 2-13
packet control characters packet E2-14
print control packet C ..... 2-12
printer configuration upload ..... 2-6-2-7
supply setup packet $B$ ..... 2-10
system setup packet A ..... 2-9
system setupsyntax2-9
T
table
bar code lengths ..... 3-9
ENQ reference byte 2 ..... 7-4
ENQ reference byte 3 ..... 7-6
fixed/variable bar codes ..... 3-9
hexadecimal conversion ..... C-16
immediate commands ..... 2-16
job status 0-2 ..... 7-12
run length conversion ..... C-20
special chars in batch data ..... 6-4
technical support ..... 8-4
terms defined ..... G-1
test label
list of information ..... 8-3
printing ..... 8-2
text fields
character rotation ..... 3-6
color attributes ..... 3-5, 3-17-3-18
defining ..... 3-3
determining distance ..... 3-4
determining distance ..... 3-3
justification ..... 3-6
modifying character height ..... 3-4
modifying character spacing ..... 3-4, 3-17
modifying character width ..... 3-5
proportional characters ..... 3-3
rotating ..... 3-6
syntax ..... 3-3
thickness
line ..... 3-22
trailing spaces
finding ..... 9-5
transmit buffer ..... 2-23
transparent overlay ..... 3-5
TrueType font ..... 2-10, B-1, B-9, B-12, C-2
types of fields
brief description ..... 1-7
Uunit of measuresetting3-2
unsuccessful communication ..... 8-4
uploading
configuration ..... 2-6-2-7
font packet ..... 2-27
V
variable length padding for ..... 4-7
vector fonts buffer ..... 2-24
vectors
defining ..... 3-20
Vietnamese characters ..... C-12
volatile RAM
definition of term ..... G-2
voltage selection ..... 2-12
W
width/length
using option 52 ..... 4-11
word length selection ..... 2-18
worksheet
check digit ..... D-3
filling in ..... 1-8
format ..... D-1
online configuration ..... D-3
overview ..... 1-8

Index 12

Visit www.monarch.com for sales, service, supplies, information, and telephone numbers for our locations throughout the world.

## TOLL FREE:

1-800-543-6650 (In the U.S.A.)
1-800-387-4740 (In Canada)

